# 8085 program to add two 16 bit numbers

**Problem –** Write an assembly language program to add two 16 bit numbers by using:

- (a) 8 bit operation
- (b) 16 bit operation

**Example –**

**(a) Addition of 16 bit numbers using 8 bit operation –** It is a lengthy method and requires more memory as compared to 16 bit operation.

**Algorithm –**

- Load the lower part of first number in B register
- Load the lower part of second number in A (accumulator)
- Add both the numbers and store
- Load the higher part of first number in B register
- Load the higher part of second number in A (accumulator)
- Add both the numbers with carry from the lower bytes (if any) and store at the next location

**Program –**

MEMORY ADDRESS | MNEMONICS | COMMENTS |
---|---|---|

2000 | LDA 2050 | A ← 2050 |

2003 | MOV B, A | B ← A |

2004 | LDA 2052 | A ← 2052 |

2007 | ADD B | A ← A+B |

2008 | STA 3050 | A → 3050 |

200B | LDA 2051 | A ← 2051 |

200E | MOV B, A | B ← A |

200F | LDA 2053 | A ← 2053 |

2012 | ADC B | A ← A+B+CY |

2013 | STA 3051 | A → 3051 |

2016 | HLT | Stops execution |

**Explanation –**

**LDA 2050**stores the value at 2050 in A (accumulator)**MOV B, A**stores the value of A into B register**LDA 2052**stores the value at 2052 in A**ADD B**add the contents of B and A and store in A**STA 3050**stores the result in memory location 3050**LDA 2051**stores the value at 2051 in A**MOV B, A**stores the value of A into B register**LDA 2053**stores the value at 2053 in A**ADC B**add the contents of B, A and carry from the lower bit addition and store in A**STA 3051**stores the result in memory location 3051**HLT**stops execution

**(b) Addition of 16 bit numbers using 16 bit operation –** It is a very short method and less memory is also required as compared to 8 bit operation.

**Algorithm –**

- Load both the lower and the higher bits of first number at once
- Copy the first number to another register pair
- Load both the lower and the higher bits of second number at once
- Add both the register pairs and store the result in a memory location

**Program –**

MEMORY ADDRESS | MNEMONICS | COMMENTS |
---|---|---|

2000 | LHLD 2050 | H-L ← 2050 |

2003 | XCHG | D H & E L |

2004 | LHLD 2052 | H-L ← 2052 |

2007 | DAD D | H ← H+D & L ← L+E |

2008 | SHLD 3050 | A → 3050 |

200B | HLT | Stops execution |

**Explanation –**

**LHLD 2050**loads the value at 2050 in L register and that in 2051 in H register (first number)**XCHG**copies the content of H to D register and L to S register**LHLD 2052**loads the value at 2052 in L register and that in 2053 in H register (second number)**DAD D**adds the value of H with D and L with E and stores the result in H and L**SHLD 3050**stores the result at memory location 3050**HLT**stops execution

## Recommended Posts:

- 8085 program to count total even numbers in series of 10 numbers
- 8085 program to count total odd numbers in series of 10 numbers
- 8085 program to add 2-BCD numbers
- 8085 program to add two 8 bit numbers
- 8085 program to multiply two 16-bit numbers
- 8085 program to swap two 8-bit numbers
- 8085 program to divide two 8 bit numbers
- 8085 program to divide two 16 bit numbers
- 8085 program to sum of two 8 bit numbers without carry
- 8085 program to add numbers in an array
- 8085 program to multiply two 8 bit numbers
- 8085 program to subtract two 16-bit numbers with or without borrow
- 8085 program to find larger of two 8 bit numbers
- 8085 program to find the sum of first n natural numbers
- 8085 program to add three 16 bit numbers stored in registers

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.