Skip to content
Related Articles
Open in App
Not now

Related Articles

Turn a Queue into a Priority Queue

Improve Article
Save Article
  • Last Updated : 29 Nov, 2022
Improve Article
Save Article

What is Queue?

Queue is an abstract data type that is open at both ends. One end is always used to insert data (enqueue) which is basically the rear/back/tail end and the other which is the front end is used to remove data (dequeue). Queue follows First-In-First-Out (FIFO) methodology, i.e., “the data item stored first will be accessed first”.

Declaration:

queue<data_type> name

 What is a priority queue?

Priority Queue is an abstract data type that is similar to a queue, and every element has some priority value associated with it. The priority of the elements in a priority queue determines the order in which elements are served. If in any case, the elements have the same priority, they are served as per their ordering in the queue.

Declaration : 

priority_queue<data_type> name

Types of Priority Queue:

Ascending Order Priority Queue

As the name suggests, in ascending order priority queue, the element with a lower priority value is given a higher priority in the priority list. For example, if we have the following elements in a priority queue arranged in ascending order like {4, 6, 8, 9, 10}. Here, 4 is the smallest number. Therefore, it will get the highest priority in a priority queue.

Descending order Priority Queue

In a descending order priority queue, the elements with a higher priority value are given higher priority. For example, if we have a priority queue with the values {10, 4, 3, 2}, the element 10 will be given the highest priority as it has the largest value.

Types of priority queue

Types of priority queue

Turning a Queue into a Priority Queue

Given a queue. The task is to change a queue in a priority queue.

Example :

Input : Q = [ 3, 4, 2, 8, 1, 7 ]
Output : Q =[ 8, 7, 4, 3, 2, 1 ]

Approach :

The idea is to sort the queue elements either in ascending / descending order. We know that queue can be sorted using recursion that takes extra space due to function call stack.

After sorting the queue either in ascending or descending order we can change a queue into a priority queue. whenever we push any value inside the queue, just after that we have to sort the queue then all elements will be arranged according to their priority.

  • Create a queue q and push random elements in it.
  • Create sortqueue function to sort the array.
    • If the queue is empty then return back.
    • Initialize a variable item and store the topmost element of the queue in it and pop it out from the queue.
    • Again, make a recursive call inside sortqueue function.
  • Now, again insert elements in the queue by checking if q is empty or not.
    • If the queue is empty then push the front value inside the queue.
    • Check if the current element is greater than the element at the front.
      • If yes, then push the value inside the queue and make a recursive call for inserting the front element of the queue to the last.
        • If q is not empty then return back.
        • Pop the front element and push in the last of the queue.
        • Make recursive calls for further elements.
      • Otherwise, push the front element into the last of the queue and make a recursive call for pushing elements inside the queue.

 Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to push element in last
// by popping from front until size becomes 0
void frontelement(queue<int>& q, int qsize)
{
    // Base condition
    if (qsize <= 0)
        return;
 
    // Pop front element and push
    // this last in a queue
    q.push(q.front());
    q.pop();
 
    // Recursive call for pushing element
    frontelement(q, qsize - 1);
}
 
// Function for inserting element in the queue
void insertelement(queue<int>& q, int val, int qsize)
{
    if (qsize == 0 || q.empty()) {
        q.push(val);
        return;
    }
 
    // If current element is greater than
    // the element at the front
    else if (val >= q.front()) {
 
        // Call stack with front of queue
        q.push(val);
 
        // Recursive call for inserting
        // a front element of the queue
        // to the last
        frontelement(q, qsize);
    }
    else {
 
        // Push front element into last in a queue
        q.push(q.front());
        q.pop();
 
        // Recursive call for pushing elements in a queue
        insertelement(q, val, qsize - 1);
    }
}
 
// Function to sort queue
void sortqueue(queue<int>& q)
{
    if (q.empty()) {
        return;
    }
    int item = q.front();
    q.pop();
    sortqueue(q);
    insertelement(q, item, q.size());
}
 
// Driver Code
int main()
{
    queue<int> q;
    q.push(3);
    q.push(4);
    q.push(2);
    q.push(8);
    q.push(1);
    q.push(7);
 
    // Initially queue is 3 4 2 8 1 7
    sortqueue(q);
 
    while (!q.empty()) {
        cout << q.front() << " ";
        q.pop();
    }
 
    return 0;
}

Java




// Java code to implement the approach
import java.io.*;
import java.util.*;
 
class GFG {
 
  // Function to push element in last
  // by popping from front until size becomes 0
  static void frontelement(Queue<Integer> q, int qsize)
  {
    // Base condition
    if (qsize <= 0) {
      return;
    }
 
    // Pop front element and push
    // this last in a queue
    q.add(q.peek());
    q.poll();
 
    // Recursive call for pushing element
    frontelement(q, qsize - 1);
  }
 
  // Function for inserting element in the queue
  static void insertelement(Queue<Integer> q, int val,
                            int qsize)
  {
    if (qsize == 0 || q.isEmpty()) {
      q.add(val);
      return;
    }
 
    // If current element is greater than
    // the element at the front
    else if (val >= q.peek()) {
 
      // Call stack with front of queue
      q.add(val);
 
      // Recursive call for inserting
      // a front element of the queue
      // to the last
      frontelement(q, qsize);
    }
    else {
 
      // Push front element into last in a queue
      q.add(q.peek());
      q.poll();
 
      // Recursive call for pushing elements in a
      // queue
      insertelement(q, val, qsize - 1);
    }
  }
 
  // Function to sort queue
  static void sortqueue(Queue<Integer> q)
  {
    if (q.isEmpty()) {
      return;
    }
    int item = q.peek();
    q.poll();
    sortqueue(q);
    insertelement(q, item, q.size());
  }
 
  public static void main(String[] args)
  {
    Queue<Integer> q = new LinkedList<>();
    q.add(3);
    q.add(4);
    q.add(2);
    q.add(8);
    q.add(1);
    q.add(7);
 
    // Initially queue is 3 4 2 8 1 7
    sortqueue(q);
 
    while (!q.isEmpty()) {
      System.out.print(q.peek() + " ");
      q.poll();
    }
  }
}
 
// This code is contributed by lokeshmvs21.

Python3




# Python code to implement the approach
 
# Function to push element in last
# by popping from front until size becomes 0
def frontelement(q, qsize):
    # Base condition
    if qsize <= 0:
        return
 
    # Pop front element and push
    # this last in a queue
    q.append(q[0])
    q.pop(0)
 
    # Recursive call for pushing element
    frontelement(q, qsize - 1)
 
# function for inserting element in the queue
def insertelement(q, val, qsize):
    if qsize == 0 or len(q) == 0:
        q.append(val)
        return
 
    # If current element is greater than
    # the element at the front
    elif val >= q[0]:
        # Call stack with front of queue
        q.append(val)
 
        # Recursive call for inserting
        # a front element of the queue
        # to the last
        frontelement(q, qsize)
    else:
        # Push front element into last in a queue
        q.append(q[0])
        q.pop(0)
 
        # Recursive call for pushing elements in a queue
        insertelement(q, val, qsize - 1)
 
# Function to sort queue
def sortqueue(q):
    if len(q) == 0:
        return
    item = q[0]
    q.pop(0)
    sortqueue(q)
    insertelement(q, item, len(q))
 
 
# Driver Code
q = [3, 4, 2, 8, 1, 7]
 
# Initially queue is 3 4 2 8 1 7
sortqueue(q)
print(q)
 
# This code is contributed by Tapesh(tapeshdua420)

C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
class Program {
    // Function to push element in last
    // by popping from front until size becomes 0
    static void frontelement(Queue<int> q, int qsize)
    {
        // Base condition
        if (qsize <= 0)
            return;
 
        // Pop front element and push
        // this last in a queue
        q.Enqueue(q.Peek());
        q.Dequeue();
 
        // Recursive call for pushing element
        frontelement(q, qsize - 1);
    }
 
    // Function for inserting element in the queue
    static void insertelement(Queue<int> q, int val,
                              int qsize)
    {
        if (qsize == 0 || q.Count == 0) {
            q.Enqueue(val);
            return;
        }
 
        // If current element is greater than
        // the element at the front
        else if (val >= q.Peek()) {
            // Call stack with front of queue
            q.Enqueue(val);
 
            // Recursive call for inserting
            // a front element of the queue
            // to the last
            frontelement(q, qsize);
        }
        else {
            // Push front element into last in a queue
            q.Enqueue(q.Peek());
            q.Dequeue();
 
            // Recursive call for pushing elements in a
            // queue
            insertelement(q, val, qsize - 1);
        }
    }
 
    // Function to sort queue
    static void sortqueue(Queue<int> q)
    {
        if (q.Count == 0) {
            return;
        }
        int item = q.Peek();
        q.Dequeue();
        sortqueue(q);
        insertelement(q, item, q.Count);
    }
 
    // Driver Code
    static void Main(string[] args)
    {
        Queue<int> q = new Queue<int>();
        q.Enqueue(3);
        q.Enqueue(4);
        q.Enqueue(2);
        q.Enqueue(8);
        q.Enqueue(1);
        q.Enqueue(7);
 
        // Initially queue is 3 4 2 8 1 7
        sortqueue(q);
 
        while (q.Count != 0) {
            Console.Write(q.Peek() + " ");
            q.Dequeue();
        }
    }
}
 
// This code is contributed by Tapesh(tapeshdua420)

Javascript




// Javascript code to implement the approach
 
// Function to push element in last
// by popping from front until size becomes 0
function frontelement(q, qsize) {
    // Base condition
    if (qsize <= 0) {
        return;
    }
 
    // Pop front element and push
    // this last in a queue
    q.push(q[0]);
    q.shift();
 
    // Recursive call for pushing element
    frontelement(q, qsize - 1);
}
 
// function for inserting element in the queue
function insertelement(q, val, qsize) {
    if (qsize == 0 || q.length == 0) {
        q.push(val);
        return;
    }
 
    // If current element is greater than
    // the element at the front
    else if (val >= q[0]) {
        // Call stack with front of queue
        q.push(val);
 
        // Recursive call for inserting
        // a front element of the queue
        // to the last
        frontelement(q, qsize);
    } else {
        // Push front element into last in a queue
        q.push(q[0]);
        q.shift();
 
        // Recursive call for pushing elements in a queue
        insertelement(q, val, qsize - 1);
    }
}
 
// Function to sort queue
function sortqueue(q) {
    if (q.length == 0) {
        return;
    }
    var item = q[0];
    q.shift();
    sortqueue(q);
    insertelement(q, item, q.length);
}
 
// Driver Code
var q = [3, 4, 2, 8, 1, 7];
 
// Initially queue is 3 4 2 8 1 7
sortqueue(q);
console.log(q);
 
// This code is contributed by Tapesh(tapeshdua420)

Output

8 7 4 3 2 1 

Time complexity: O(N2)
Auxiliary Space: O(N)

Related Articles:


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!