Given N points in 2-dimensional space, we need to find three points such that triangle made by choosing these points should not contain any other points inside. All given points will not lie on the same line so solution will always exist.

Examples:

In above diagram possible triangle with no point inside can be formed by choosing these triplets, [(0, 0), (2, 0), (1, 1)] [(0, 0), (1, 1), (0, 2)] [(1, 1), (2, 0), (2, 2)] [(1, 1), (0, 2), (2, 2)] So any of the above triplets can be the final answer.

The solution is based on the fact that if there exist triangle(s) with no points inside, then we can form a triangle with any random point among all points.

We can solve this problem by searching all three points one by one. The first point can be chosen randomly. After choosing the first point, we need two points such that their slope should be different and no point should lie inside the triangle of these three points. We can do this by choosing the second point as nearest point to the first and third point as second nearest point with the different slope. For doing this, we first iterate over all points and choose the point which is nearest to the first one and designate that as second point of the required triangle. Then we iterate one more time to find point which has different slope and has the smallest distance, which will be the third point of our triangle.

## C++

`// C/C++ program to find triangle with no point inside` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// method to get square of distance between` `// (x1, y1) and (x2, y2)` `int` `getDistance(` `int` `x1, ` `int` `y1, ` `int` `x2, ` `int` `y2)` `{` ` ` `return` `(x2 - x1)*(x2 - x1) +` ` ` `(y2 - y1)*(y2 - y1);` `}` `// Method prints points which make triangle with no` `// point inside` `void` `triangleWithNoPointInside(` `int` `points[][2], ` `int` `N)` `{` ` ` `// any point can be chosen as first point of triangle` ` ` `int` `first = 0;` ` ` `int` `second, third;` ` ` `int` `minD = INT_MAX;` ` ` `// choose nearest point as second point of triangle` ` ` `for` `(` `int` `i = 0; i < N; i++)` ` ` `{` ` ` `if` `(i == first)` ` ` `continue` `;` ` ` `// Get distance from first point and choose` ` ` `// nearest one` ` ` `int` `d = getDistance(points[i][0], points[i][1],` ` ` `points[first][0], points[first][1]);` ` ` `if` `(minD > d)` ` ` `{` ` ` `minD = d;` ` ` `second = i;` ` ` `}` ` ` `}` ` ` `// Pick third point by finding the second closest` ` ` `// point with different slope.` ` ` `minD = INT_MAX;` ` ` `for` `(` `int` `i = 0; i < N; i++)` ` ` `{` ` ` `// if already chosen point then skip them` ` ` `if` `(i == first || i == second)` ` ` `continue` `;` ` ` `// get distance from first point` ` ` `int` `d = getDistance(points[i][0], points[i][1],` ` ` `points[first][0], points[first][1]);` ` ` `/* the slope of the third point with the first` ` ` `point should not be equal to the slope of` ` ` `second point with first point (otherwise` ` ` `they'll be collinear) and among all such` ` ` `points, we choose point with the smallest` ` ` `distance */` ` ` `// here cross multiplication is compared instead` ` ` `// of division comparison` ` ` `if` `((points[i][0] - points[first][0]) *` ` ` `(points[second][1] - points[first][1]) !=` ` ` `(points[second][0] - points[first][0]) *` ` ` `(points[i][1] - points[first][1]) &&` ` ` `minD > d)` ` ` `{` ` ` `minD = d;` ` ` `third = i;` ` ` `}` ` ` `}` ` ` `cout << points[first][0] << ` `", "` ` ` `<< points[first][1] << endl;` ` ` `cout << points[second][0] << ` `", "` ` ` `<< points[second][1] << endl;` ` ` `cout << points[third][0] << ` `", "` ` ` `<< points[third][1] << endl;` `}` `// Driver code to test above methods` `int` `main()` `{` ` ` `int` `points[][2] = {{0, 0}, {0, 2}, {2, 0},` ` ` `{2, 2}, {1, 1}};` ` ` `int` `N = ` `sizeof` `(points) / ` `sizeof` `(points[0]);` ` ` `triangleWithNoPointInside(points, N);` ` ` `return` `0;` `}` |

## Java

`// Java program to find triangle` `// with no point inside` `import` `java.io.*;` `class` `GFG` `{` ` ` `// method to get square of distance between` ` ` `// (x1, y1) and (x2, y2)` ` ` `static` `int` `getDistance(` `int` `x1, ` `int` `y1, ` `int` `x2, ` `int` `y2)` ` ` `{` ` ` `return` `(x2 - x1)*(x2 - x1) +` ` ` `(y2 - y1)*(y2 - y1);` ` ` `}` ` ` ` ` `// Method prints points which make triangle with no` ` ` `// point inside` ` ` `static` `void` `triangleWithNoPointInside(` `int` `points[][], ` `int` `N)` ` ` `{` ` ` `// any point can be chosen as first point of triangle` ` ` `int` `first = ` `0` `;` ` ` `int` `second =` `0` `;` ` ` `int` `third =` `0` `;` ` ` `int` `minD = Integer.MAX_VALUE;` ` ` ` ` `// choose nearest point as second point of triangle` ` ` `for` `(` `int` `i = ` `0` `; i < N; i++)` ` ` `{` ` ` `if` `(i == first)` ` ` `continue` `;` ` ` ` ` `// Get distance from first point and choose` ` ` `// nearest one` ` ` `int` `d = getDistance(points[i][` `0` `], points[i][` `1` `],` ` ` `points[first][` `0` `], points[first][` `1` `]);` ` ` `if` `(minD > d)` ` ` `{` ` ` `minD = d;` ` ` `second = i;` ` ` `}` ` ` `}` ` ` ` ` `// Pick third point by finding the second closest` ` ` `// point with different slope.` ` ` `minD = Integer.MAX_VALUE;` ` ` `for` `(` `int` `i = ` `0` `; i < N; i++)` ` ` `{` ` ` `// if already chosen point then skip them` ` ` `if` `(i == first || i == second)` ` ` `continue` `;` ` ` ` ` `// get distance from first point` ` ` `int` `d = getDistance(points[i][` `0` `], points[i][` `1` `],` ` ` `points[first][` `0` `], points[first][` `1` `]);` ` ` ` ` `/* the slope of the third point with the first` ` ` `point should not be equal to the slope of` ` ` `second point with first point (otherwise` ` ` `they'll be collinear) and among all such` ` ` `points, we choose point with the smallest` ` ` `distance */` ` ` `// here cross multiplication is compared instead` ` ` `// of division comparison` ` ` `if` `((points[i][` `0` `] - points[first][` `0` `]) *` ` ` `(points[second][` `1` `] - points[first][` `1` `]) !=` ` ` `(points[second][` `0` `] - points[first][` `0` `]) *` ` ` `(points[i][` `1` `] - points[first][` `1` `]) &&` ` ` `minD > d)` ` ` `{` ` ` `minD = d;` ` ` `third = i;` ` ` `}` ` ` `}` ` ` ` ` `System.out.println(points[first][` `0` `] + ` `", "` ` ` `+ points[first][` `1` `]);` ` ` `System.out.println(points[second][` `0` `]+ ` `", "` ` ` `+ points[second][` `1` `]) ;` ` ` `System.out.println(points[third][` `0` `] +` `", "` ` ` `+ points[third][` `1` `]);` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `main (String[] args)` ` ` `{` ` ` `int` `points[][] = {{` `0` `, ` `0` `}, {` `0` `, ` `2` `}, {` `2` `, ` `0` `},` ` ` `{` `2` `, ` `2` `}, {` `1` `, ` `1` `}};` ` ` `int` `N = points.length;` ` ` `triangleWithNoPointInside(points, N);` ` ` `}` `}` `// This article is contributed by vt_m.` |

## Python 3

`# Python3 program to find triangle` `# with no point inside` `import` `sys` `# method to get square of distance between` `# (x1, y1) and (x2, y2)` `def` `getDistance(x1, y1, x2, y2):` ` ` `return` `(x2 ` `-` `x1) ` `*` `(x2 ` `-` `x1) ` `+` `\` ` ` `(y2 ` `-` `y1) ` `*` `(y2 ` `-` `y1)` `# Method prints points which make triangle` `# with no point inside` `def` `triangleWithNoPointInside(points, N):` ` ` ` ` `# any point can be chosen as` ` ` `# first point of triangle` ` ` `first ` `=` `0` ` ` `second ` `=` `0` ` ` `third ` `=` `0` ` ` `minD ` `=` `sys.maxsize` ` ` `# choose nearest point as` ` ` `# second point of triangle` ` ` `for` `i ` `in` `range` `(` `0` `, N):` ` ` `if` `i ` `=` `=` `first:` ` ` `continue` ` ` `# Get distance from first point and choose` ` ` `# nearest one` ` ` `d ` `=` `getDistance(points[i][` `0` `], points[i][` `1` `],` ` ` `points[first][` `0` `],` ` ` `points[first][` `1` `])` ` ` `if` `minD > d:` ` ` `minD ` `=` `d` ` ` `second ` `=` `i` ` ` ` ` `# Pick third point by finding the second closest` ` ` `# point with different slope.` ` ` `minD ` `=` `sys.maxsize` ` ` `for` `i ` `in` `range` `(` `0` `, N):` ` ` ` ` `# if already chosen point then skip them` ` ` `if` `i ` `=` `=` `first ` `or` `i ` `=` `=` `second:` ` ` `continue` ` ` `# get distance from first point` ` ` `d ` `=` `getDistance(points[i][` `0` `], points[i][` `1` `],` ` ` `points[first][` `0` `],` ` ` `points[first][` `1` `])` ` ` `""" the slope of the third point with the first` ` ` `point should not be equal to the slope of` ` ` `second point with first point (otherwise` ` ` `they'll be collinear) and among all such` ` ` `points, we choose point with the smallest` ` ` `distance """` ` ` ` ` `# here cross multiplication is compared instead` ` ` `# of division comparison` ` ` `if` `((points[i][` `0` `] ` `-` `points[first][` `0` `]) ` `*` ` ` `(points[second][` `1` `] ` `-` `points[first][` `1` `]) !` `=` ` ` `(points[second][` `0` `] ` `-` `points[first][` `0` `]) ` `*` ` ` `(points[i][` `1` `] ` `-` `points[first][` `1` `])` ` ` `and` `minD > d) :` ` ` `minD ` `=` `d` ` ` `third ` `=` `i` ` ` `print` `(points[first][` `0` `], ` `', '` `, points[first][` `1` `])` ` ` `print` `(points[second][` `0` `], ` `', '` `, points[second][` `1` `])` ` ` `print` `(points[third][` `0` `], ` `', '` `, points[third][` `1` `])` `# Driver code` `points ` `=` `[[` `0` `, ` `0` `], [` `0` `, ` `2` `],` ` ` `[` `2` `, ` `0` `], [` `2` `, ` `2` `], [` `1` `, ` `1` `]]` `N ` `=` `len` `(points)` `triangleWithNoPointInside(points, N)` `# This code is contributed by Gowtham Yuvaraj` |

## C#

`using` `System;` `// C# program to find triangle` `// with no point inside` `public` `class` `GFG` `{` ` ` `// method to get square of distance between` ` ` `// (x1, y1) and (x2, y2)` ` ` `public` `static` `int` `getDistance(` `int` `x1, ` `int` `y1, ` `int` `x2, ` `int` `y2)` ` ` `{` ` ` `return` `(x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);` ` ` `}` ` ` `// Method prints points which make triangle with no` ` ` `// point inside` ` ` `public` `static` `void` `triangleWithNoPointInside(` `int` `[][] points, ` `int` `N)` ` ` `{` ` ` `// any point can be chosen as first point of triangle` ` ` `int` `first = 0;` ` ` `int` `second = 0;` ` ` `int` `third = 0;` ` ` `int` `minD = ` `int` `.MaxValue;` ` ` `// choose nearest point as second point of triangle` ` ` `for` `(` `int` `i = 0; i < N; i++)` ` ` `{` ` ` `if` `(i == first)` ` ` `{` ` ` `continue` `;` ` ` `}` ` ` `// Get distance from first point and choose` ` ` `// nearest one` ` ` `int` `d = getDistance(points[i][0], points[i][1], points[first][0], points[first][1]);` ` ` `if` `(minD > d)` ` ` `{` ` ` `minD = d;` ` ` `second = i;` ` ` `}` ` ` `}` ` ` `// Pick third point by finding the second closest` ` ` `// point with different slope.` ` ` `minD = ` `int` `.MaxValue;` ` ` `for` `(` `int` `i = 0; i < N; i++)` ` ` `{` ` ` `// if already chosen point then skip them` ` ` `if` `(i == first || i == second)` ` ` `{` ` ` `continue` `;` ` ` `}` ` ` `// get distance from first point` ` ` `int` `d = getDistance(points[i][0], points[i][1], points[first][0], points[first][1]);` ` ` `/* the slope of the third point with the first` ` ` `point should not be equal to the slope of` ` ` `second point with first point (otherwise` ` ` `they'll be collinear) and among all such` ` ` `points, we choose point with the smallest` ` ` `distance */` ` ` `// here cross multiplication is compared instead` ` ` `// of division comparison` ` ` `if` `((points[i][0] - points[first][0]) * (points[second][1] - points[first][1]) != (points[second][0] - points[first][0]) * (points[i][1] - points[first][1]) && minD > d)` ` ` `{` ` ` `minD = d;` ` ` `third = i;` ` ` `}` ` ` `}` ` ` `Console.WriteLine(points[first][0] + ` `", "` `+ points[first][1]);` ` ` `Console.WriteLine(points[second][0] + ` `", "` `+ points[second][1]);` ` ` `Console.WriteLine(points[third][0] + ` `", "` `+ points[third][1]);` ` ` `}` ` ` `// Driver code ` ` ` `public` `static` `void` `Main(` `string` `[] args)` ` ` `{` ` ` `int` `[][] points = ` `new` `int` `[][]` ` ` `{` ` ` `new` `int` `[] {0, 0},` ` ` `new` `int` `[] {0, 2},` ` ` `new` `int` `[] {2, 0},` ` ` `new` `int` `[] {2, 2},` ` ` `new` `int` `[] {1, 1}` ` ` `};` ` ` `int` `N = points.Length;` ` ` `triangleWithNoPointInside(points, N);` ` ` `}` `}` ` ` `// This code is contributed by Shrikant13` |

## Javascript

`<script>` `// javascript program to find triangle` `// with no povar inside` ` ` `// method to get square of distance between` ` ` `// (x1, y1) and (x2, y2)` ` ` `function` `getDistance(x1 , y1 , x2 , y2) {` ` ` `return` `(x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1);` ` ` `}` ` ` `// Method prints points which make triangle with no` ` ` `// povar inside` ` ` `function` `triangleWithNoPointInside(points , N) {` ` ` `// any povar can be chosen as first povar of triangle` ` ` `var` `first = 0;` ` ` `var` `second = 0;` ` ` `var` `third = 0;` ` ` `var` `minD = Number.MAX_VALUE;` ` ` `// choose nearest povar as second povar of triangle` ` ` `for` `(i = 0; i < N; i++) {` ` ` `if` `(i == first)` ` ` `continue` `;` ` ` `// Get distance from first povar and choose` ` ` `// nearest one` ` ` `var` `d = getDistance(points[i][0], points[i][1], points[first][0], points[first][1]);` ` ` `if` `(minD > d) {` ` ` `minD = d;` ` ` `second = i;` ` ` `}` ` ` `}` ` ` `// Pick third povar by finding the second closest` ` ` `// povar with different slope.` ` ` `minD = Number.MAX_VALUE;` ` ` `for` `(i = 0; i < N; i++) {` ` ` `// if already chosen povar then skip them` ` ` `if` `(i == first || i == second)` ` ` `continue` `;` ` ` `// get distance from first point` ` ` `var` `d = getDistance(points[i][0], points[i][1], points[first][0], points[first][1]);` ` ` `/*` ` ` `* the slope of the third povar with the first povar should not be equal to the` ` ` `* slope of second povar with first povar (otherwise they'll be collinear) and` ` ` `* among all such points, we choose povar with the smallest distance` ` ` `*/` ` ` `// here cross multiplication is compared instead` ` ` `// of division comparison` ` ` `if` `((points[i][0] - points[first][0])` ` ` `* (points[second][1] - points[first][1]) != (points[second][0] - points[first][0])` ` ` `* (points[i][1] - points[first][1])` ` ` `&& minD > d) {` ` ` `minD = d;` ` ` `third = i;` ` ` `}` ` ` `}` ` ` `document.write(points[first][0] + ` `", "` `+ points[first][1]+` `"<br/>"` `);` ` ` `document.write(points[second][0] + ` `", "` `+ points[second][1]+` `"<br/>"` `);` ` ` `document.write(points[third][0] + ` `", "` `+ points[third][1]+` `"<br/>"` `);` ` ` `}` ` ` `// Driver code` ` ` ` ` `var` `points = [ [ 0, 0 ], [ 0, 2 ], [ 2, 0 ], [ 2, 2 ], [ 1, 1 ] ];` ` ` `var` `N = points.length;` ` ` `triangleWithNoPointInside(points, N);` `// This code contributed by umadevi9616` `</script>` |

**Output:**

0, 0 1, 1 0, 2

This article is contributed by **Utkarsh Trivedi**. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend live classes with industry experts, please refer **DSA Live Classes**