In the field of numerical analysis, Trapezoidal rule is used to find the approximation of a definite integral. The basic idea in Trapezoidal rule is to assume the region under the graph of the given function to be a trapezoid and calculate its area.
It follows that:
For more accurate results the domain of the graph is divided into n segments of equal size as shown below:
Grid spacing or segment size h = (b-a) / n.
Therefore, approximate value of the integral can be given by:
C++
// C++ program to implement Trapezoidal rule #include<stdio.h> // A sample function whose definite integral's // approximate value is computed using Trapezoidal // rule float y( float x) { // Declaring the function f(x) = 1/(1+x*x) return 1/(1+x*x); } // Function to evalute the value of integral float trapezoidal( float a, float b, float n) { // Grid spacing float h = (b-a)/n; // Computing sum of first and last terms // in above formula float s = y(a)+y(b); // Adding middle terms in above formula for ( int i = 1; i < n; i++) s += 2*y(a+i*h); // h/2 indicates (b-a)/2n. Multiplying h/2 // with s. return (h/2)*s; } // Driver program to test above function int main() { // Range of definite integral float x0 = 0; float xn = 1; // Number of grids. Higher value means // more accuracy int n = 6; printf ( "Value of integral is %6.4f\n" , trapezoidal(x0, xn, n)); return 0; } |
Java
// Java program to implement Trapezoidal rule class GFG { // A sample function whose definite // integral's approximate value // is computed using Trapezoidal // rule static float y( float x) { // Declaring the function // f(x) = 1/(1+x*x) return 1 / ( 1 + x * x); } // Function to evalute the value of integral static float trapezoidal( float a, float b, float n) { // Grid spacing float h = (b - a) / n; // Computing sum of first and last terms // in above formula float s = y(a) + y(b); // Adding middle terms in above formula for ( int i = 1 ; i < n; i++) s += 2 * y( a + i * h); // h/2 indicates (b-a)/2n. Multiplying h/2 // with s. return (h / 2 ) * s; } // Driver code public static void main (String[] args) { // Range of definite integral float x0 = 0 ; float xn = 1 ; // Number of grids. Higher // value means more accuracy int n = 6 ; System.out.println( "Value of integral is " + Math.round(trapezoidal(x0, xn, n) * 10000.0 ) / 10000.0 ); } } // This code is contributed by Anant Agarwal. |
Python3
# Python3 code to implement Trapezoidal rule # A sample function whose definite # integral's approximate value is # computed using Trapezoidal rule def y( x ): # Declaring the function # f(x) = 1/(1+x*x) return ( 1 / ( 1 + x * x)) # Function to evalute the value of integral def trapezoidal (a, b, n): # Grid spacing h = (b - a) / n # Computing sum of first and last terms # in above formula s = (y(a) + y(b)) # Adding middle terms in above formula i = 1 while i < n: s + = 2 * y(a + i * h) i + = 1 # h/2 indicates (b-a)/2n. # Multiplying h/2 with s. return ((h / 2 ) * s) # Driver code to test above function # Range of definite integral x0 = 0 xn = 1 # Number of grids. Higher value means # more accuracy n = 6 print ( "Value of integral is " , "%.4f" % trapezoidal(x0, xn, n)) # This code is contributed by "Sharad_Bhardwaj". |
C#
// C# program to implement Trapezoidal // rule. using System; class GFG { // A sample function whose definite // integral's approximate value // is computed using Trapezoidal // rule static float y( float x) { // Declaring the function // f(x) = 1/(1+x*x) return 1 / (1 + x * x); } // Function to evalute the value // of integral static float trapezoidal( float a, float b, float n) { // Grid spacing float h = (b - a) / n; // Computing sum of first and // last terms in above formula float s = y(a) + y(b); // Adding middle terms in above // formula for ( int i = 1; i < n; i++) s += 2 * y( a + i * h); // h/2 indicates (b-a)/2n. // Multiplying h/2 with s. return (h / 2) * s; } // Driver code public static void Main () { // Range of definite integral float x0 = 0; float xn = 1; // Number of grids. Higher // value means more accuracy int n = 6; Console.Write( "Value of integral is " + Math.Round(trapezoidal(x0, xn, n) * 10000.0) / 10000.0); } } // This code is contributed by nitin mittal. |
PHP
<?php // PHP program to implement Trapezoidal rule // A sample function whose definite // integral's approximate value is // computed using Trapezoidal rule function y( $x ) { // Declaring the function // f(x) = 1/(1+x*x) return 1 / (1 + $x * $x ); } // Function to evalute the // value of integral function trapezoidal( $a , $b , $n ) { // Grid spacing $h = ( $b - $a ) / $n ; // Computing sum of first // and last terms // in above formula $s = y( $a ) + y( $b ); // Adding middle terms // in above formula for ( $i = 1; $i < $n ; $i ++) $s += 2 * Y( $a + $i * $h ); // h/2 indicates (b-a)/2n. // Multiplying h/2 with s. return ( $h / 2) * $s ; } // Driver Code // Range of definite integral $x0 = 0; $xn = 1; // Number of grids. // Higher value means // more accuracy $n = 6; echo ( "Value of integral is " ); echo (trapezoidal( $x0 , $xn , $n )); // This code is contributed by nitin mittal ?> |
Output:
Value of integral is 0.7842
References:
https://en.wikipedia.org/wiki/Trapezoidal_rule
This article is contributed by Harsh Agarwal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.