Skip to content
Related Articles

Related Articles

Improve Article
TensorFlow – How to create one hot tensor
  • Last Updated : 01 Aug, 2020

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

One hot tensor is a Tensor in which all the values at indices where i =j and i!=j is same. 

Method Used:

  • one_hot: This method accepts a Tensor of indices, a scalar defining depth of the one hot dimension and returns a one hot Tensor with default on value 1 and off value 0. These on and off values can be modified.

Example 1:

Python3






# importing the library
import tensorflow as tf
  
# Initializing the Input
indices = tf.constant([1, 2, 3])
  
# Printing the Input
print("Indices: ", indices)
  
# Generating one hot Tensor
res = tf.one_hot(indices, depth = 3)
  
# Printing the resulting Tensors
print("Res: ", res )

Output:

Indices:  tf.Tensor([1 2 3], shape=(3, ), dtype=int32)
Res:  tf.Tensor(
[[0. 1. 0.]
 [0. 0. 1.]
 [0. 0. 0.]], shape=(3, 3), dtype=float32)

Example 2: This example explicitly defines the on and off values for the one hot tensor.

Python3




# importing the library
import tensorflow as tf
  
# Initializing the Input
indices = tf.constant([1, 2, 3])
  
# Printing the Input
print("Indices: ", indices)
  
# Generating one hot Tensor
res = tf.one_hot(indices, depth = 3, on_value = 3, off_value =-1)
  
# Printing the resulting Tensors
print("Res: ", res )

Output:

Indices:  tf.Tensor([1 2 3], shape=(3, ), dtype=int32)
Res:  tf.Tensor(
[[-1  3 -1]
 [-1 -1  3]
 [-1 -1 -1]], shape=(3, 3), dtype=int32)


 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :