# Tail Call Elimination

We have discussed (in tail recursion) that a recursive function is tail recursive if the recursive call is the last thing executed by the function.

## C++

 `// An example of tail recursive function` `void` `print(``int` `n)` `{` `    ``if` `(n < 0)  ` `       ``return``;` `    ``cout << ``" "` `<< n;`   `    ``// The last executed statement is recursive call` `    ``print(n-1);` `}`

## Java

 `// An example of tail recursive function` `static` `void` `print(``int` `n)` `{` `    ``if` `(n < ``0``)  ` `       ``return``;` `      `  `      ``System.out.print(``" "` `+ n);`   `    ``// The last executed statement` `    ``// is recursive call` `    ``print(n - ``1``);` `}`   `// This code is contributed by rutvik_56`

## Python3

 `# An example of tail recursive function` `def` `display(n):` `    `  `    ``if` `(n < ``0``):` `       ``return` `   `  `    ``print``(``" "``, n)` ` `  `    ``# The last executed statement is recursive call` `    ``display(n ``-` `1``)`   `# This code is contributed by sanjoy_62`

## C#

 `// An example of tail recursive function` `static` `void` `print(``int` `n)` `{` `    ``if` `(n < 0)  ` `       ``return``;` `      `  `      ``Console.Write(``" "` `+ n);`   `    ``// The last executed statement` `    ``// is recursive call` `    ``print(n - 1);` `}`   `// This code is contributed by pratham76`

## Javascript

 ``

We also discussed that a tail-recursive is better than a non-tail recursive as tail-recursion can be optimized by modern compilers. Modern compiler basically does tail call elimination to optimize the tail-recursive code.

If we take a closer look at the above function, we can remove the last call with goto. Below are examples of tail call elimination.

## C++

 `// Above code after tail call elimination` `void` `print(``int` `n)` `{` `start:` `    ``if` `(n < 0) ` `       ``return``;` `    ``cout << ``" "` `<< n;`   `    ``// Update parameters of recursive call` `    ``// and replace recursive call with goto` `    ``n = n-1` `    ``goto` `start;` `}`

## Java

 `// Java code after tail call elimination` `public` `static` `void` `print(``int` `n)` `{` `    ``start:` `        ``if` `(n < ``0``) ` `           ``return``;` `        ``System.out.print(``" "``+n);`   `        ``// Update parameters of recursive call` `        ``// and replace recursive call with goto` `        ``n = n - ``1` `        ``goto` `start;` `}`   `// This code is contributed by ishankhandelwals.`

## Python3

 `# Python code after tail call elimination` `def` `print``(n):` `    ``while` `n >``=` `0``:` `        ``print``(``" "``, n)` `        `  `         ``# Update parameters of recursive call` `        ``# and replace recursive call with goto` `        ``n ``=` `n ``-` `1`   `        ``# This code is contributed by ishankhandelwals.`

## C#

 `// Above code after tail call elimination` `public` `static` `void` `print(``int` `n)` `{` `    ``while``(n>=0)` `    ``{` `        ``if` `(n < 0) ` `            ``return``;` `        ``Console.Write(``" "` `+ n);`   `    ``// Update parameters of recursive call` `    ``// and replace recursive call with goto` `        ``n = n-1;` `    ``}` `}`   `// The code is contributed by Arushi Jindal.`

## Javascript

 `// Above code after tail call elimination` `function` `print( n)` `{` `    ``while``(n>=0)` `    ``{` `        ``if` `(n < 0) ` `            ``return``;` `        ``Console.Write(``" "` `+ n);`   `    ``// Update parameters of recursive call` `    ``// and replace recursive call with goto` `        ``n = n-1;` `    ``}` `}`

QuickSort : One more example
QuickSort is also tail recursive (Note that MergeSort is not tail recursive, this is also one of the reasons why QuickSort performs better)

## C++

 `/* Tail recursive function for QuickSort` ` ``arr[] --> Array to be sorted,` `  ``low  --> Starting index,` `  ``high  --> Ending index */` `void` `quickSort(``int` `arr[], ``int` `low, ``int` `high)` `{` `    ``if` `(low < high)` `    ``{` `        ``/* pi is partitioning index, arr[p] is now` `           ``at right place */` `        ``int` `pi = partition(arr, low, high);`   `        ``// Separately sort elements before` `        ``// partition and after partition` `        ``quickSort(arr, low, pi - 1);` `        ``quickSort(arr, pi + 1, high);` `    ``}` `}` `// See below link for complete running code` `// http://geeksquiz.com/quick-sort/`

## Java

 `/* Java program to implement the above approach`   `   ``Tail recursive function for quick sort` `   ``arr[] --> to get the elements` `   ``low --> starting index` `   ``high --> ending index` `*/` `static` `void` `quickSort(``int``[] arr, ``int` `low, ``int` `high)` `{` `    ``if` `(low < high)` `    ``{` `        ``/* pi is partitioning index,after the call` `        ``to partition function the arr[p] will be` `        ``at its correct index*/` `        ``int` `pi = partition(arr, low, high);`   `        ``// Sort elements before and after ` `        ``// the partition separately` `        ``// thus whole array will get sorted eventually` `        ``quickSort(arr, low, pi - ``1``);` `        ``quickSort(arr, pi + ``1``, high);` `    ``}` `}`   `// This code was contributed by Abhijeet Kumar`

## Python3

 `# Python program to implement` `# the above approach`   `# Tail recursive function for QuickSort` `# arr[] --> Array to be sorted,` `# low --> Starting index,` `# high --> Ending index */`   `def` `quickSort(arr,low,high):` `    ``if``(low

## C#

 `// C# program to implement` `// the above approach` `using` `System;`   `class` `GFG{` `    `    `/* Tail recursive function for QuickSort` ` ``arr[] --> Array to be sorted,` `  ``low  --> Starting index,` `  ``high  --> Ending index */` `static` `void` `quickSort(``int``[] arr, ``int` `low, ``int` `high)` `{` `    ``if` `(low < high)` `    ``{` `        ``/* pi is partitioning index, arr[p] is now` `           ``at right place */` `        ``int` `pi = partition(arr, low, high);` ` `  `        ``// Separately sort elements before` `        ``// partition and after partition` `        ``quickSort(arr, low, pi - 1);` `        ``quickSort(arr, pi + 1, high);` `    ``}` `}` `}`   `// This code is contributed by code_hunt.`

## Javascript

 `/* Tail recursive function for QuickSort` ` ``arr[] --> Array to be sorted,` `  ``low  --> Starting index,` `  ``high  --> Ending index */` `function` `quickSort( arr,  low, high)` `{` `    ``if` `(low < high)` `    ``{` `        ``/* pi is partitioning index, arr[p] is now` `           ``at right place */` `        ``let pi = partition(arr, low, high);`   `        ``// Separately sort elements before` `        ``// partition and after partition` `        ``quickSort(arr, low, pi - 1);` `        ``quickSort(arr, pi + 1, high);` `    ``}` `}` `// See below link for complete running code` `// http://geeksquiz.com/quick-sort/`   `// This code was contributed by poojaagrawal2.`

The above function can be replaced by following after tail call elimination.

## C++

 `/* QuickSort after tail call elimination` `  ``arr[] --> Array to be sorted,` `  ``low  --> Starting index,` `  ``high  --> Ending index */` `void` `quickSort(``int` `arr[], ``int` `low, ``int` `high)` `{` `start:` `    ``if` `(low < high)` `    ``{` `        ``/* pi is partitioning index, arr[p] is now` `           ``at right place */` `        ``int` `pi = partition(arr, low, high);`   `        ``// Separately sort elements before` `        ``// partition and after partition` `        ``quickSort(arr, low, pi - 1);`   `        ``// Update parameters of recursive call` `        ``// and replace recursive call with goto` `        ``low = pi+1;` `        ``high = high; ` `        ``goto` `start;` `    ``}` `}` `// See below link for complete running code` `// https://ide.geeksforgeeks.org/dbq4yl`

## Java

 `// QuickSort after tail call elimination` `// arr[] --> Array to be sorted,` `// low --> Starting index,` `// high --> Ending index` `void` `quickSort(``int` `arr[], ``int` `low, ``int` `high) {` `    ``start:` `    ``if` `(low < high) {` `        ``// pi is partitioning index, arr[p] is now ` `        ``// at right place` `        ``int` `pi = partition(arr, low, high);`   `        ``// Separately sort elements before ` `        ``// partition and after partition` `        ``quickSort(arr, low, pi - ``1``);`   `        ``// Update parameters of recursive call` `        ``// and replace recursive call with goto` `        ``low = pi + ``1``;` `        ``high = high;` `        ``goto` `start;` `    ``}` `}`   `// This code is contributed Aman Kumar.`

## Python3

 `def` `quickSort(arr, low, high):` `    ``def` `start():` `        ``nonlocal low, high` `        ``if` `low < high:` `            ``# pi is the partitioning index, arr[p] is now at the right place` `            ``pi ``=` `partition(arr, low, high)`   `            ``# Separately sort elements before partition and after partition` `            ``quickSort(arr, low, pi ``-` `1``)`   `            ``# Update parameters of the recursive call` `            ``# and replace recursive call with a function call` `            ``low ``=` `pi ``+` `1` `            ``start()`   `    ``start()`

## C#

 `using` `System;`   `class` `QuickSort {` `    ``// Function to perform the partitioning of the array` `    ``int` `Partition(``int``[] arr, ``int` `low, ``int` `high) {` `        ``int` `pivot = arr[high];` `        ``int` `i = low - 1;`   `        ``for` `(``int` `j = low; j < high; j++) {` `            ``if` `(arr[j] < pivot) {` `                ``i++;`   `                ``// Swap arr[i] and arr[j]` `                ``int` `temp = arr[i];` `                ``arr[i] = arr[j];` `                ``arr[j] = temp;` `            ``}` `        ``}`   `        ``// Swap arr[i+1] and arr[high] (or pivot)` `        ``int` `temp1 = arr[i + 1];` `        ``arr[i + 1] = arr[high];` `        ``arr[high] = temp1;`   `        ``return` `i + 1;` `    ``}`   `    ``// Main sorting function with a different name` `    ``void` `Sort(``int``[] arr, ``int` `low, ``int` `high) {` `        ``Action start = ``null``;` `        ``start = () => {` `            ``if` `(low < high) {` `                ``int` `pi = Partition(arr, low, high);`   `                ``// Separately sort elements before partition` `                ``Sort(arr, low, pi - 1);`   `                ``// Replace the recursive call with the start function call` `                ``low = pi + 1;` `                ``start();` `            ``}` `        ``};`   `        ``start();` `    ``}`   `    ``// Function to print the sorted array` `    ``void` `PrintArray(``int``[] arr) {` `        ``int` `n = arr.Length;` `        ``for` `(``int` `i = 0; i < n; i++) {` `            ``Console.Write(arr[i] + ``" "``);` `        ``}` `        ``Console.WriteLine();` `    ``}`   `    ``// Driver code` `    ``static` `void` `Main() {` `        ``QuickSort quickSort = ``new` `QuickSort();` `        ``int``[] arr = { 64, 25, 12, 22, 11 };` `        ``int` `n = arr.Length;`   `        ``Console.WriteLine(``"Unsorted array:"``);` `        ``quickSort.PrintArray(arr);`   `        ``quickSort.Sort(arr, 0, n - 1);`   `        ``Console.WriteLine(``"Sorted array:"``);` `        ``quickSort.PrintArray(arr);` `    ``}` `}`

## Javascript

 `// QuickSort after tail call elimination` `// arr[] --> Array to be sorted,` `// low --> Starting index,` `// high --> Ending index` `function` `quickSort(arr, low, high) {` `    ``let start = () => {` `        ``if` `(low < high) {` `            ``// pi is partitioning index, arr[p] is now at right place` `            ``let pi = partition(arr, low, high);`   `            ``// Separately sort elements before partition and after partition` `            ``quickSort(arr, low, pi - 1);`   `            ``// Update parameters of recursive call` `            ``// and replace recursive call with goto` `            ``low = pi + 1;` `            ``high = high;` `            ``start();` `        ``}` `    ``};`   `    ``start();` `}`     `// The code is contributed by Arushi Goel.`

Therefore job for compilers is to identify tail recursion, add a label at the beginning and update parameter(s) at the end followed by adding the last goto statement.

Function stack frame management in Tail Call Elimination :
Recursion uses a stack to keep track of function calls. With every function call, a new frame is pushed onto the stack which contains local variables and data of that call. Let’s say one stack frame requires O(1) i.e, constant memory space, then for N recursive call memory required would be O(N).

Tail call elimination reduces the space complexity of recursion from O(N) to O(1). As function call is eliminated, no new stack frames are created and the function is executed in constant memory space.

It is possible for the function to execute in constant memory space because, in tail recursive function, there are no statements after call statement so preserving state and frame of parent function is not required. Child function is called and finishes immediately, it doesn’t have to return control back to the parent function.

As no computation is performed on the returned value and no statements are left for execution, the current frame can be modified as per the requirements of the current function call. So there is no need to preserve stack frames of previous function calls and function executes in constant memory space. This makes tail recursion faster and memory-friendly.

Next Article:
QuickSort Tail Call Optimization (Reducing worst case space to Log n )