Program for Gauss-Jordan Elimination Method

Prerequisite : Gaussian Elimination to Solve Linear Equations

Introduction : The Gauss-Jordan method, also known as Gauss-Jordan elimination method is used to solve a system of linear equations and is a modified version of Gauss Elimination Method.

It is similar and simpler than Gauss Elimination Method as we have to perform 2 different process in Gauss Elimination Method i.e.
1) Formation of upper triangular matrix, and
2) Back substitution



But in case of Gauss-Jordan Elimination Method, we only have to form a reduced row echelon form (diagonal matrix). Below given is the flow-chart of Gauss-Jordan Elimination Method.

Flow Chart of Gauss-Jordan Elimination Method :

Examples :

Input :  2y + z = 4
         x + y + 2z = 6
         2x + y + z = 7

Output :
Final Augumented Matrix is : 
1 0 0 2.2 
0 2 0 2.8 
0 0 -2.5 -3 

Result is : 2.2 1.4 1.2 

Explanation : Below given is the explanation of the above example.

  • Input Augmented Matrix is :
  • Interchanging R1 and R2, we get
  • Performing the row operation R3 <- R3 – (2*R1)
  • Performing the row operations R1 <- R1 – ((1/2)* R2) and R3 <- R3 + ((1/2)*R2)
  • Performing R1 <- R1 + ((3/5)*R3) and R2 <- R2 + ((2/5)*R3)
  • Unique Solutions are :
  • C++

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C++ Implementation for Gauss-Jordan
    // Elimination Method
    #include <bits/stdc++.h>
    using namespace std;
      
    #define M 10
      
    // Function to print the matrix
    void PrintMatrix(float a[][M], int n)
    {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j <= n; j++) 
              cout << a[i][j] << " ";
            cout << endl;
        }
    }
      
    // function to reduce matrix to reduced
    // row echelon form.
    int PerformOperation(float a[][M], int n)
    {
        int i, j, k = 0, c, flag = 0, m = 0;
        float pro = 0;
          
        // Performing elementary operations
        for (i = 0; i < n; i++)
        {
            if (a[i][i] == 0) 
            {
                c = 1;
                while (a[i + c][i] == 0 && (i + c) < n) 
                    c++;            
                if ((i + c) == n) {
                    flag = 1;
                    break;
                }
                for (j = i, k = 0; k <= n; k++) 
                    swap(a[j][k], a[j+c][k]);
            }
      
            for (j = 0; j < n; j++) {
                  
                // Excluding all i == j
                if (i != j) {
                      
                    // Converting Matrix to reduced row
                    // echelon form(diagonal matrix)
                    float pro = a[j][i] / a[i][i];
      
                    for (k = 0; k <= n; k++)                 
                        a[j][k] = a[j][k] - (a[i][k]) * pro;                
                }
            }
        }
        return flag;
    }
      
    // Function to print the desired result 
    // if unique solutions exists, otherwise 
    // prints no solution or infinite solutions 
    // depending upon the input given.
    void PrintResult(float a[][M], int n, int flag)
    {
        cout << "Result is : ";
      
        if (flag == 2)     
          cout << "Infinite Solutions Exists" << endl;    
        else if (flag == 3)     
          cout << "No Solution Exists" << endl;
          
          
        // Printing the solution by dividing constants by
        // their respective diagonal elements
        else {
            for (int i = 0; i < n; i++)         
                cout << a[i][n] / a[i][i] << " ";        
        }
    }
      
    // To check whether infinite solutions 
    // exists or no solution exists
    int CheckConsistency(float a[][M], int n, int flag)
    {
        int i, j;
        float sum;
          
        // flag == 2 for infinite solution
        // flag == 3 for No solution
        flag = 3;
        for (i = 0; i < n; i++) 
        {
            sum = 0;
            for (j = 0; j < n; j++)        
                sum = sum + a[i][j];
            if (sum == a[i][j]) 
                flag = 2;        
        }
        return flag;
    }
      
    // Driver code
    int main()
    {
        float a[M][M] = {{ 0, 2, 1, 4 }, 
                         { 1, 1, 2, 6 }, 
                         { 2, 1, 1, 7 }};
                           
        // Order of Matrix(n)
        int n = 3, flag = 0;
          
        // Performing Matrix transformation
        flag = PerformOperation(a, n);
          
        if (flag == 1)     
            flag = CheckConsistency(a, n, flag);    
      
        // Printing Final Matrix
        cout << "Final Augumented Matrix is : " << endl;
        PrintMatrix(a, n);
        cout << endl;
          
        // Printing Solutions(if exist)
        PrintResult(a, n, flag);
      
        return 0;
    }

    chevron_right

    
    

    Java

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // Java Implementation for Gauss-Jordan
    // Elimination Method
    class GFG {
          
    static int M = 10;
      
    // Function to print the matrix
    static void PrintMatrix(float a[][], int n)
    {
        for (int i = 0; i < n; i++) 
        {
            for (int j = 0; j <= n; j++) 
                System.out.print(a[i][j] + " ");
            System.out.println();
        }
    }
      
    // function to reduce matrix to reduced
    // row echelon form.
    static int PerformOperation(float a[][], int n)
    {
        int i, j, k = 0, c, flag = 0, m = 0;
        float pro = 0;
          
        // Performing elementary operations
        for (i = 0; i < n; i++)
        {
            if (a[i][i] == 0
            {
                c = 1;
                while (a[i + c][i] == 0 && (i + c) < n) 
                    c++;         
                if ((i + c) == n) 
                {
                    flag = 1;
                    break;
                }
                for (j = i, k = 0; k <= n; k++) 
                {
                    float temp =a[j][k];
                    a[j][k] = a[j+c][k];
                    a[j+c][k] = temp;
                }
            }
      
            for (j = 0; j < n; j++) 
            {
                  
                // Excluding all i == j
                if (i != j) 
                {
                      
                    // Converting Matrix to reduced row
                    // echelon form(diagonal matrix)
                    float p = a[j][i] / a[i][i];
      
                    for (k = 0; k <= n; k++)                 
                        a[j][k] = a[j][k] - (a[i][k]) * p;             
                }
            }
        }
        return flag;
    }
      
    // Function to print the desired result 
    // if unique solutions exists, otherwise 
    // prints no solution or infinite solutions 
    // depending upon the input given.
    static void PrintResult(float a[][], int n, int flag)
    {
        System.out.print("Result is : ");
      
        if (flag == 2)     
        System.out.println("Infinite Solutions Exists"); 
        else if (flag == 3)     
        System.out.println("No Solution Exists");
          
          
        // Printing the solution by dividing constants by
        // their respective diagonal elements
        else {
            for (int i = 0; i < n; i++)         
                System.out.print(a[i][n] / a[i][i] +" ");     
        }
    }
      
    // To check whether infinite solutions 
    // exists or no solution exists
    static int CheckConsistency(float a[][], int n, int flag)
    {
        int i, j;
        float sum;
          
        // flag == 2 for infinite solution
        // flag == 3 for No solution
        flag = 3;
        for (i = 0; i < n; i++) 
        {
            sum = 0;
            for (j = 0; j < n; j++)     
                sum = sum + a[i][j];
            if (sum == a[i][j]) 
                flag = 2;     
        }
        return flag;
    }
      
    // Driver code
    public static void main(String[] args) 
    {
        float a[][] = {{ 0, 2, 1, 4 }, 
                        { 1, 1, 2, 6 }, 
                        { 2, 1, 1, 7 }};
                          
        // Order of Matrix(n)
        int n = 3, flag = 0;
          
        // Performing Matrix transformation
        flag = PerformOperation(a, n);
          
        if (flag == 1)     
            flag = CheckConsistency(a, n, flag); 
      
        // Printing Final Matrix
        System.out.println("Final Augumented Matrix is : ");
        PrintMatrix(a, n);
        System.out.println("");
          
        // Printing Solutions(if exist)
        PrintResult(a, n, flag);
    }
    }
      
    /* This code contributed by PrinciRaj1992 */

    chevron_right

    
    

    C#

    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    // C# Implementation for Gauss-Jordan
    // Elimination Method
    using System;
    using System.Collections.Generic;
      
    class GFG
    {
    static int M = 10;
      
    // Function to print the matrix
    static void PrintMatrix(float [,]a, int n)
    {
        for (int i = 0; i < n; i++) 
        {
            for (int j = 0; j <= n; j++) 
                Console.Write(a[i, j] + " ");
            Console.WriteLine();
        }
    }
      
    // function to reduce matrix to reduced
    // row echelon form.
    static int PerformOperation(float [,]a, int n)
    {
        int i, j, k = 0, c, flag = 0;
          
        // Performing elementary operations
        for (i = 0; i < n; i++)
        {
            if (a[i, i] == 0) 
            {
                c = 1;
                while (a[i + c, i] == 0 && (i + c) < n) 
                    c++;         
                if ((i + c) == n) 
                {
                    flag = 1;
                    break;
                }
                for (j = i, k = 0; k <= n; k++) 
                {
                    float temp = a[j, k];
                    a[j, k] = a[j + c, k];
                    a[j + c, k] = temp;
                }
            }
      
            for (j = 0; j < n; j++) 
            {
                  
                // Excluding all i == j
                if (i != j) 
                {
                      
                    // Converting Matrix to reduced row
                    // echelon form(diagonal matrix)
                    float p = a[j, i] / a[i, i];
      
                    for (k = 0; k <= n; k++)                 
                        a[j, k] = a[j, k] - (a[i, k]) * p;             
                }
            }
        }
        return flag;
    }
      
    // Function to print the desired result 
    // if unique solutions exists, otherwise 
    // prints no solution or infinite solutions 
    // depending upon the input given.
    static void PrintResult(float [,]a,
                            int n, int flag)
    {
        Console.Write("Result is : ");
      
        if (flag == 2)     
        Console.WriteLine("Infinite Solutions Exists"); 
        else if (flag == 3)     
        Console.WriteLine("No Solution Exists");
          
        // Printing the solution by dividing 
        // constants by their respective
        // diagonal elements
        else 
        {
            for (int i = 0; i < n; i++)         
                Console.Write(a[i, n] / a[i, i] + " ");     
        }
    }
      
    // To check whether infinite solutions 
    // exists or no solution exists
    static int CheckConsistency(float [,]a, 
                                int n, int flag)
    {
        int i, j;
        float sum;
          
        // flag == 2 for infinite solution
        // flag == 3 for No solution
        flag = 3;
        for (i = 0; i < n; i++) 
        {
            sum = 0;
            for (j = 0; j < n; j++)     
                sum = sum + a[i, j];
            if (sum == a[i, j]) 
                flag = 2;     
        }
        return flag;
    }
      
    // Driver code
    public static void Main(String[] args) 
    {
        float [,]a = {{ 0, 2, 1, 4 }, 
                      { 1, 1, 2, 6 }, 
                      { 2, 1, 1, 7 }};
                          
        // Order of Matrix(n)
        int n = 3, flag = 0;
          
        // Performing Matrix transformation
        flag = PerformOperation(a, n);
          
        if (flag == 1)     
            flag = CheckConsistency(a, n, flag); 
      
        // Printing Final Matrix
        Console.WriteLine("Final Augumented Matrix is : ");
        PrintMatrix(a, n);
        Console.WriteLine("");
          
        // Printing Solutions(if exist)
        PrintResult(a, n, flag);
    }
    }
      
    // This code is contributed by 29AjayKumar

    chevron_right

    
    

    Output:

    Final Augumented Matrix is : 
    1 0 0 2.2 
    0 2 0 2.8 
    0 0 -2.5 -3 
    
    Result is : 2.2 1.4 1.2
    

    Applications :

    • Solving System of Linear Equations : Gauss-Jordan Elimination Method can be used for finding the solution of a systems of linear equations which is applied throughout the mathematics.
    • Finding Determinant : The Gaussian Elimination can be applied to a square matrix in order to find determinant of the matrix.
    • Finding Inverse of Matrix : The Gauss-Jordan Elimination method can be used in determining the inverse of a square matrix.
    • Finding Ranks and Bases : Using reduced row echelon form, the ranks as well as bases of square matrices can be computed by Gaussian elimination method.


    My Personal Notes arrow_drop_up

    Check out this Author's contributed articles.

    If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

    Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



    Improved By : princiraj1992, 29AjayKumar



    Article Tags :
    Practice Tags :


    1


    Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.