# Sum of all the parent nodes having child node x

Given a binary tree containing n nodes. The problem is to find the sum of all the parent node’s which have a child node with value x.

Examples:

```Input : Binary tree with x = 2:
4
/ \
2   5
/ \ / \
7  2 2  3
Output : 11

4
/ \
2   5
/ \ / \
7  2 2  3

The highlighted nodes (4, 2, 5) above
are the nodes having 2 as a child node.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Algorithm:

```sumOfParentOfX(root,sum,x)
if root == NULL
return

if (root->left && root->left->data == x) ||
(root->right && root->right->data == x)
sum += root->data

sumOfParentOfX(root->left, sum, x)
sumOfParentOfX(root->right, sum, x)

sumOfParentOfXUtil(root,x)
Declare sum = 0
sumOfParentOfX(root, sum, x)
return sum
```

## C++

 `// C++ implementation to find the sum of all  ` `// the parent nodes having child node x ` `#include ` ` `  `using` `namespace` `std; ` ` `  `// Node of a binary tree ` `struct` `Node ` `{ ` `    ``int` `data; ` `    ``Node *left, *right; ` `}; ` ` `  `// function to get a new node ` `Node* getNode(``int` `data) ` `{ ` `    ``// allocate memory for the node ` `    ``Node *newNode =  ` `        ``(Node*)``malloc``(``sizeof``(Node)); ` `     `  `    ``// put in the data     ` `    ``newNode->data = data; ` `    ``newNode->left = newNode->right = NULL; ` `    ``return` `newNode;     ` `} ` ` `  `// function to find the sum of all the  ` `// parent nodes having child node x ` `void` `sumOfParentOfX(Node* root, ``int``& sum, ``int` `x) ` `{ ` `    ``// if root == NULL ` `    ``if` `(!root) ` `        ``return``; ` `     `  `    ``// if left or right child of root is 'x', then ` `    ``// add the root's data to 'sum' ` `    ``if` `((root->left && root->left->data == x) || ` `        ``(root->right && root->right->data == x)) ` `        ``sum += root->data; ` `     `  `    ``// recursively find the required parent nodes ` `    ``// in the left and right subtree     ` `    ``sumOfParentOfX(root->left, sum, x); ` `    ``sumOfParentOfX(root->right, sum, x); ` `     `  `} ` ` `  `// utility function to find the sum of all ` `// the parent nodes having child node x ` `int` `sumOfParentOfXUtil(Node* root, ``int` `x) ` `{ ` `    ``int` `sum = 0; ` `    ``sumOfParentOfX(root, sum, x); ` `     `  `    ``// required sum of parent nodes ` `    ``return` `sum; ` `} ` ` `  `// Driver program to test above ` `int` `main() ` `{ ` `    ``// binary tree formation ` `    ``Node *root = getNode(4);           ``/*        4        */` `    ``root->left = getNode(2);           ``/*       / \       */` `    ``root->right = getNode(5);          ``/*      2   5      */` `    ``root->left->left = getNode(7);     ``/*     / \ / \     */` `    ``root->left->right = getNode(2);    ``/*    7  2 2  3    */` `    ``root->right->left = getNode(2); ` `    ``root->right->right = getNode(3); ` `     `  `    ``int` `x = 2; ` `     `  `    ``cout << ``"Sum = "` `         ``<< sumOfParentOfXUtil(root, x); ` `          `  `    ``return` `0;     ` `}  `

## Java

 `// Java implementation to find  ` `// the sum of all the parent  ` `// nodes having child node x  ` `class` `GFG ` `{ ` `// sum ` `static` `int` `sum = ``0``; ` `     `  `     `  `// Node of a binary tree  ` `static` `class` `Node  ` `{  ` `    ``int` `data;  ` `    ``Node left, right;  ` `};  ` ` `  `// function to get a new node  ` `static` `Node getNode(``int` `data)  ` `{  ` `    ``// allocate memory for the node  ` `    ``Node newNode = ``new` `Node();  ` `     `  `    ``// put in the data      ` `    ``newNode.data = data;  ` `    ``newNode.left = newNode.right = ``null``;  ` `    ``return` `newNode;      ` `}  ` ` `  `// function to find the sum of all the  ` `// parent nodes having child node x  ` `static` `void` `sumOfParentOfX(Node root, ``int` `x)  ` `{  ` `    ``// if root == NULL  ` `    ``if` `(root == ``null``)  ` `        ``return``;  ` `     `  `    ``// if left or right child  ` `    ``// of root is 'x', then  ` `    ``// add the root's data to 'sum'  ` `    ``if` `((root.left != ``null` `&& root.left.data == x) ||  ` `        ``(root.right != ``null` `&& root.right.data == x))  ` `        ``sum += root.data;  ` `     `  `    ``// recursively find the required  ` `    ``// parent nodes in the left and ` `    ``// right subtree      ` `    ``sumOfParentOfX(root.left, x);  ` `    ``sumOfParentOfX(root.right, x);  ` `     `  `}  ` ` `  `// utility function to find the ` `// sum of all the parent nodes ` `// having child node x  ` `static` `int` `sumOfParentOfXUtil(Node root,     ` `                              ``int` `x)  ` `{  ` `    ``sum = ``0``;  ` `    ``sumOfParentOfX(root, x);  ` `     `  `    ``// required sum of parent nodes  ` `    ``return` `sum;  ` `}  ` ` `  `// Driver Code ` `public` `static` `void` `main(String args[]) ` `{  ` `    ``// binary tree formation  ` `    ``Node root = getNode(``4``);         ``//     4      ` `    ``root.left = getNode(``2``);         ``//     / \      ` `    ``root.right = getNode(``5``);         ``//     2 5      ` `    ``root.left.left = getNode(``7``);     ``//     / \ / \      ` `    ``root.left.right = getNode(``2``); ``// 7 2 2 3  ` `    ``root.right.left = getNode(``2``);  ` `    ``root.right.right = getNode(``3``);  ` `     `  `    ``int` `x = ``2``;  ` `     `  `    ``System.out.println( ``"Sum = "` `+ ` `           ``sumOfParentOfXUtil(root, x));  ` `}  ` `} ` ` `  `// This code is contributed by Arnab Kundu `

## Python3

# Python3 implementation to find the Sum of
# all the parent nodes having child node x

# function to get a new node
class getNode:
def __init__(self, data):

# put in the data
self.data = data
self.left = self.right = None

# function to find the Sum of all the
# parent nodes having child node x
def SumOfParentOfX(root, Sum, x):

# if root == None
if (not root):
return

# if left or right child of root is ‘x’,
# then add the root’s data to ‘Sum’
if ((root.left and root.left.data == x) or
(root.right and root.right.data == x)):
Sum += root.data

# recursively find the required parent
# nodes in the left and right subtree
SumOfParentOfX(root.left, Sum, x)
SumOfParentOfX(root.right, Sum, x)

# utility function to find the Sum of all
# the parent nodes having child node x
def SumOfParentOfXUtil(root, x):
Sum = 
SumOfParentOfX(root, Sum, x)

# required Sum of parent nodes
return Sum

# Driver Code
if __name__ == ‘__main__’:

# binary tree formation
root = getNode(4) # 4
root.left = getNode(2) # / \
root.right = getNode(5) # 2 5
root.left.left = getNode(7) # / \ / \
root.left.right = getNode(2) # 7 2 2 3
root.right.left = getNode(2)
root.right.right = getNode(3)

x = 2

print(“Sum = “, SumOfParentOfXUtil(root, x))

# This code is contributed by PranchalK

## C#

 `using` `System; ` ` `  `// C# implementation to find  ` `// the sum of all the parent  ` `// nodes having child node x  ` `public` `class` `GFG ` `{ ` `// sum  ` `public` `static` `int` `sum = 0; ` ` `  ` `  `// Node of a binary tree  ` `public` `class` `Node ` `{ ` `    ``public` `int` `data; ` `    ``public` `Node left, right; ` `} ` ` `  `// function to get a new node  ` `public` `static` `Node getNode(``int` `data) ` `{ ` `    ``// allocate memory for the node  ` `    ``Node newNode = ``new` `Node(); ` ` `  `    ``// put in the data      ` `    ``newNode.data = data; ` `    ``newNode.left = newNode.right = ``null``; ` `    ``return` `newNode; ` `} ` ` `  `// function to find the sum of all the  ` `// parent nodes having child node x  ` `public` `static` `void` `sumOfParentOfX(Node root, ``int` `x) ` `{ ` `    ``// if root == NULL  ` `    ``if` `(root == ``null``) ` `    ``{ ` `        ``return``; ` `    ``} ` ` `  `    ``// if left or right child  ` `    ``// of root is 'x', then  ` `    ``// add the root's data to 'sum'  ` `    ``if` `((root.left != ``null` `&& root.left.data == x) ||  ` `       ``(root.right != ``null` `&& root.right.data == x)) ` `    ``{ ` `        ``sum += root.data; ` `    ``} ` ` `  `    ``// recursively find the required  ` `    ``// parent nodes in the left and  ` `    ``// right subtree      ` `    ``sumOfParentOfX(root.left, x); ` `    ``sumOfParentOfX(root.right, x); ` ` `  `} ` ` `  `// utility function to find the  ` `// sum of all the parent nodes  ` `// having child node x  ` `public` `static` `int` `sumOfParentOfXUtil(Node root, ``int` `x) ` `{ ` `    ``sum = 0; ` `    ``sumOfParentOfX(root, x); ` ` `  `    ``// required sum of parent nodes  ` `    ``return` `sum; ` `} ` ` `  `// Driver Code  ` `public` `static` `void` `Main(``string``[] args) ` `{ ` `    ``// binary tree formation  ` `    ``Node root = getNode(4); ``//     4 ` `    ``root.left = getNode(2); ``//     / \ ` `    ``root.right = getNode(5); ``//     2 5 ` `    ``root.left.left = getNode(7); ``//     / \ / \ ` `    ``root.left.right = getNode(2); ``// 7 2 2 3 ` `    ``root.right.left = getNode(2); ` `    ``root.right.right = getNode(3); ` ` `  `    ``int` `x = 2; ` ` `  `    ``Console.WriteLine(``"Sum = "` `+ sumOfParentOfXUtil(root, x)); ` `} ` `} ` ` `  `// This code is contributed by Shrikant13 `

Output:

```Sum = 11
```

Time Complexity: O(n).

This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

7

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.