Given an array arr[] of N elements, the task is to update all the array elements such that an element arr[i] is updated as arr[i] = arr[i] – X where X = arr[i + 1] + arr[i + 2] + … + arr[N – 1] and finally print the sum of the updated array.
Examples:
Input: arr[] = {40, 25, 12, 10}
Output: 8
The updated array will be {-7, 3, 2, 10}.
-7 + 3 + 2 + 10 = 8
Input: arr[] = {50, 30, 10, 2, 0}
Output: 36
Approach: A simple solution is for every possible value of i, update arr[i] = arr[i] – sum(arr[i+1…N-1]).
C++
#include <iostream>
using namespace std;
int sumArr( int arr[], int n)
{
int sum = 0;
for ( int i = 0; i < n; i++)
sum += arr[i];
return sum;
}
int sumModArr( int arr[], int n)
{
for ( int i = 0; i < n - 1; i++) {
int subSum = 0;
for ( int j = i + 1; j < n; j++) {
subSum += arr[j];
}
arr[i] -= subSum;
}
return sumArr(arr, n);
}
int main()
{
int arr[] = { 40, 25, 12, 10 };
int n = sizeof (arr) / sizeof (arr[0]);
cout << sumModArr(arr, n);
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int sumArr( int arr[], int n)
{
int sum = 0 ;
for ( int i = 0 ; i < n; i++)
sum += arr[i];
return sum;
}
static int sumModArr( int arr[], int n)
{
for ( int i = 0 ; i < n - 1 ; i++)
{
int subSum = 0 ;
for ( int j = i + 1 ; j < n; j++)
{
subSum += arr[j];
}
arr[i] -= subSum;
}
return sumArr(arr, n);
}
public static void main(String []args)
{
int arr[] = { 40 , 25 , 12 , 10 };
int n = arr.length;
System.out.println(sumModArr(arr, n));
}
}
|
Python3
def sumArr(arr, n):
sum = 0
for i in range (n):
sum + = arr[i]
return sum
def sumModArr(arr, n):
for i in range (n - 1 ):
subSum = 0
for j in range (i + 1 , n):
subSum + = arr[j]
arr[i] - = subSum
return sumArr(arr, n)
arr = [ 40 , 25 , 12 , 10 ]
n = len (arr)
print (sumModArr(arr, n))
|
C#
using System;
class GFG
{
static int sumArr( int []arr, int n)
{
int sum = 0;
for ( int i = 0; i < n; i++)
sum += arr[i];
return sum;
}
static int sumModArr( int []arr, int n)
{
for ( int i = 0; i < n - 1; i++)
{
int subSum = 0;
for ( int j = i + 1; j < n; j++)
{
subSum += arr[j];
}
arr[i] -= subSum;
}
return sumArr(arr, n);
}
public static void Main()
{
int []arr = { 40, 25, 12, 10 };
int n = arr.Length;
Console.WriteLine(sumModArr(arr, n));
}
}
|
Javascript
<script>
function sumArr(arr , n) {
var sum = 0;
for (i = 0; i < n; i++)
sum += arr[i];
return sum;
}
function sumModArr(arr , n) {
for (i = 0; i < n - 1; i++) {
var subSum = 0;
for (j = i + 1; j < n; j++) {
subSum += arr[j];
}
arr[i] -= subSum;
}
return sumArr(arr, n);
}
var arr = [ 40, 25, 12, 10 ];
var n = arr.length;
document.write(sumModArr(arr, n));
</script>
|
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient approach: An efficient solution is to traverse the array from the end so that the sum of the subarray till now i.e. sum(arr[i+1…n-1]) can be used to calculate the sum of the current subarray arr[i…n-1] i.e. sum(arr[i…n-1]) = arr[i] + sum(arr[i+1…n-1]).
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
int sumArr( int arr[], int n)
{
int sum = 0;
for ( int i = 0; i < n; i++)
sum += arr[i];
return sum;
}
int sumModArr( int arr[], int n)
{
int subSum = arr[n - 1];
for ( int i = n - 2; i >= 0; i--) {
int curr = arr[i];
arr[i] -= subSum;
subSum += curr;
}
return sumArr(arr, n);
}
int main()
{
int arr[] = { 40, 25, 12, 10 };
int n = sizeof (arr) / sizeof (arr[0]);
cout << sumModArr(arr, n);
return 0;
}
|
Java
class GFG
{
static int sumArr( int arr[], int n)
{
int sum = 0 ;
for ( int i = 0 ; i < n; i++)
sum += arr[i];
return sum;
}
static int sumModArr( int arr[], int n)
{
int subSum = arr[n - 1 ];
for ( int i = n - 2 ; i >= 0 ; i--)
{
int curr = arr[i];
arr[i] -= subSum;
subSum += curr;
}
return sumArr(arr, n);
}
public static void main (String[] args)
{
int []arr = { 40 , 25 , 12 , 10 };
int n = arr.length;
System.out.println(sumModArr(arr, n));
}
}
|
Python3
def sumModArr(arr, n):
subSum = arr[n - 1 ];
for i in range (n - 2 , - 1 , - 1 ):
curr = arr[i];
arr[i] - = subSum;
subSum + = curr;
return sum (arr)
if __name__ = = "__main__" :
arr = [ 40 , 25 , 12 , 10 ];
n = len (arr);
print (sumModArr(arr, n));
|
C#
using System;
class GFG
{
static int sumArr( int []arr, int n)
{
int sum = 0;
for ( int i = 0; i < n; i++)
sum += arr[i];
return sum;
}
static int sumModArr( int []arr, int n)
{
int subSum = arr[n - 1];
for ( int i = n - 2; i >= 0; i--)
{
int curr = arr[i];
arr[i] -= subSum;
subSum += curr;
}
return sumArr(arr, n);
}
public static void Main (String[] args)
{
int []arr = { 40, 25, 12, 10 };
int n = arr.Length;
Console.WriteLine(sumModArr(arr, n));
}
}
|
Javascript
<script>
function sumArr(arr, n) {
var sum = 0;
for ( var i = 0; i < n; i++) sum += arr[i];
return sum;
}
function sumModArr(arr, n) {
var subSum = arr[n - 1];
for ( var i = n - 2; i >= 0; i--) {
var curr = arr[i];
arr[i] -= subSum;
subSum += curr;
}
return sumArr(arr, n);
}
var arr = [40, 25, 12, 10];
var n = arr.length;
document.write(sumModArr(arr, n));
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!