Given a positive integer n. The task is to find the sum of the sum of first n natural number.
Examples:
Input: n = 3
Output: 10
Explanation:
Sum of first natural number: 1
Sum of first and second natural number: 1 + 2 = 3
Sum of first, second and third natural number = 1 + 2 + 3 = 6
Sum of sum of first three natural number = 1 + 3 + 6 = 10
Input: n = 2
Output: 4
A simple solution is to one by one add triangular numbers.
C++
#include <iostream>
using namespace std;
int seriesSum( int n)
{
int sum = 0;
for ( int i=1; i<=n; i++)
sum += i*(i+1)/2;
return sum;
}
int main()
{
int n = 4;
cout << seriesSum(n);
return 0;
}
|
Java
import java.io.*;
class GFG {
static int seriesSum( int n)
{
int sum = 0 ;
for ( int i = 1 ; i <= n; i++)
sum += i * (i + 1 ) / 2 ;
return sum;
}
public static void main (String[] args)
{
int n = 4 ;
System.out.println(seriesSum(n));
}
}
|
Python3
def seriessum(n):
sum = 0
for i in range ( 1 , n + 1 ):
sum + = i * (i + 1 ) / 2
return sum
n = 4
print (seriessum(n))
|
C#
using System;
class GFG {
static int seriesSum( int n)
{
int sum = 0;
for ( int i = 1; i <= n; i++)
sum += i * (i + 1) / 2;
return sum;
}
public static void Main()
{
int n = 4;
Console.WriteLine(seriesSum(n));
}
}
|
PHP
<?php
function seriesSum( $n )
{
$sum = 0;
for ( $i = 1; $i <= $n ; $i ++)
$sum += $i * ( $i + 1) / 2;
return $sum ;
}
$n = 4;
echo (seriesSum( $n ));
?>
|
Javascript
<script>
function seriesSum(n) {
var sum = 0;
for (i = 1; i <= n; i++)
sum += i * ((i + 1) / 2);
return sum;
}
var n = 4;
document.write(seriesSum(n));
</script>
|
Time Complexity: O(N), for traversing from 1 till N to calculate the required sum.
Auxiliary Space: O(1), as constant extra space is required.
An efficient solution is to use direct formula n(n+1)(n+2)/6
Mathematically, we need to find, ? ((i * (i + 1))/2), where 1 <= i <= n
So, lets solve this summation,
Sum = ? ((i * (i + 1))/2), where 1 <= i <= n
= (1/2) * ? (i * (i + 1))
= (1/2) * ? (i2 + i)
= (1/2) * (? i2 + ? i)
We know ? i2 = n * (n + 1) * (2*n + 1) / 6 and
? i = n * ( n + 1) / 2.
Substituting the value, we get,
Sum = (1/2) * ((n * (n + 1) * (2*n + 1) / 6) + (n * ( n + 1) / 2))
= n * (n + 1)/2 [(2n + 1)/6 + 1/2]
= n * (n + 1) * (n + 2) / 6
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
int seriesSum( int n)
{
return (n * (n + 1) * (n + 2)) / 6;
}
int main()
{
int n = 4;
cout << seriesSum(n);
return 0;
}
|
Java
import java.io.*;
class GFG
{
static int seriesSum( int n)
{
return (n * (n + 1 ) * (n + 2 )) / 6 ;
}
public static void main (String[] args) {
int n = 4 ;
System.out.println( seriesSum(n));
}
}
|
Python3
def seriesSum(n):
return int ((n * (n + 1 ) * (n + 2 )) / 6 )
n = 4
print (seriesSum(n))
|
C#
using System;
class GFG {
static int seriesSum( int n)
{
return (n * (n + 1) * (n + 2)) / 6;
}
public static void Main()
{
int n = 4;
Console.WriteLine(seriesSum(n));
}
}
|
PHP
<?php
function seriesSum( $n )
{
return ( $n * ( $n + 1) *
( $n + 2)) / 6;
}
$n = 4;
echo (seriesSum( $n ));
?>
|
Javascript
<script>
function seriesSum(n)
{
return (n * (n + 1) * (n + 2)) / 6;
}
var n = 4;
document.write( seriesSum(n));
</script>
|
Time Complexity: O(1), as constant operations are being performed.
Auxiliary Space: O(1), as constant extra space is required.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
05 Sep, 2022
Like Article
Save Article