Open In App
Related Articles

Sum of first n natural numbers

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a positive integer n. The task is to find the sum of the sum of first n natural number.

Examples: 

Input: n = 3
Output: 10
Explanation: 
Sum of first natural number: 1
Sum of first and second natural number: 1 + 2 = 3
Sum of first, second and third natural number = 1 + 2 + 3 = 6
Sum of sum of first three natural number = 1 + 3 + 6 = 10

Input: n = 2
Output: 4

 

A simple solution is to one by one add triangular numbers. 
 

C++




/* CPP program to find sum
 series 1, 3, 6, 10, 15, 21...
and then find its sum*/
#include <iostream>
using namespace std;
 
// Function to find the sum of series
int seriesSum(int n)
{
    int sum = 0;
    for (int i=1; i<=n; i++)
       sum += i*(i+1)/2;
    return sum;
}
 
// Driver code
int main()
{
    int n = 4;
    cout << seriesSum(n);
    return 0;
}


Java




// Java program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum*/
import java.io.*;
 
class GFG {
         
    // Function to find the sum of series
    static int seriesSum(int n)
    {
        int sum = 0;
        for (int i = 1; i <= n; i++)
        sum += i * (i + 1) / 2;
        return sum;
    }
 
    // Driver code
    public static void main (String[] args)
    {
        int n = 4;
        System.out.println(seriesSum(n));
         
    }
}
 
// This article is contributed by vt_m


Python3




# Python3 program to find sum
# series 1, 3, 6, 10, 15, 21...
# and then find its sum.
 
# Function to find the sum of series
def seriessum(n):
     
    sum = 0
    for i in range(1, n + 1):
        sum += i * (i + 1) / 2
    return sum
     
# Driver code
n = 4
print(seriessum(n))
 
# This code is Contributed by Azkia Anam.


C#




// C# program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum*/
using System;
 
class GFG {
 
    // Function to find the sum of series
    static int seriesSum(int n)
    {
        int sum = 0;
         
        for (int i = 1; i <= n; i++)
            sum += i * (i + 1) / 2;
             
        return sum;
    }
 
    // Driver code
    public static void Main()
    {
        int n = 4;
         
        Console.WriteLine(seriesSum(n));
    }
}
 
//


PHP




<?php
// PHP program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum
 
// Function to find
// the sum of series
function seriesSum($n)
{
    $sum = 0;
    for ($i = 1; $i <= $n; $i++)
        $sum += $i * ($i + 1) / 2;
    return $sum;
}
 
// Driver code
$n = 4;
echo(seriesSum($n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// javascript program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum*/
 
    // Function to find the sum of series
    function seriesSum(n) {
        var sum = 0;
        for (i = 1; i <= n; i++)
            sum += i * ((i + 1) / 2);
        return sum;
    }
 
    // Driver code
     
        var n = 4;
        document.write(seriesSum(n));
 
 
// This code contributed by Rajput-Ji
 
</script>


Output

20

Time Complexity: O(N), for traversing from 1 till N to calculate the required sum.
Auxiliary Space: O(1), as constant extra space is required.

An efficient solution is to use direct formula n(n+1)(n+2)/6
Mathematically, we need to find, ? ((i * (i + 1))/2), where 1 <= i <= n 
So, lets solve this summation, 
 

Sum = ? ((i * (i + 1))/2), where 1 <= i <= n
    = (1/2) * ? (i * (i + 1))
    = (1/2) * ? (i2 + i)
    = (1/2) * (? i2 + ? i)

We know ? i2 = n * (n + 1) * (2*n + 1) / 6 and 
? i = n * ( n + 1) / 2.
Substituting the value, we get,
Sum = (1/2) * ((n * (n + 1) * (2*n + 1) / 6) + (n * ( n + 1) / 2))  
    = n * (n + 1)/2 [(2n + 1)/6 + 1/2]
    = n * (n + 1) * (n + 2) / 6

Below is the implementation of the above approach: 
 

C++




/* CPP program to find sum
 series 1, 3, 6, 10, 15, 21...
and then find its sum*/
#include <iostream>
using namespace std;
 
// Function to find the sum of series
int seriesSum(int n)
{
    return (n * (n + 1) * (n + 2)) / 6;
}
 
// Driver code
int main()
{
    int n = 4;
    cout << seriesSum(n);
    return 0;
}


Java




// java program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum
import java.io.*;
 
class GFG
{
    // Function to find the sum of series
    static int seriesSum(int n)
    {
        return (n * (n + 1) * (n + 2)) / 6;
    }
 
   // Driver code
    public static void main (String[] args) {
         
        int n = 4;
        System.out.println( seriesSum(n));
         
    }
}
 
// This article is contributed by vt_m


Python3




# Python 3 program to find sum
# series 1, 3, 6, 10, 15, 21...
# and then find its sum*/
 
# Function to find the sum of series
def seriesSum(n):
 
    return int((n * (n + 1) * (n + 2)) / 6)
 
 
# Driver code
n = 4
print(seriesSum(n))
 
# This code is contributed by Smitha.


C#




// C# program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum
using System;
 
class GFG {
     
    // Function to find the sum of series
    static int seriesSum(int n)
    {
        return (n * (n + 1) * (n + 2)) / 6;
    }
 
    // Driver code
    public static void Main()
    {
 
        int n = 4;
         
        Console.WriteLine(seriesSum(n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum
 
// Function to find
// the sum of series
function seriesSum($n)
{
    return ($n * ($n + 1) *
           ($n + 2)) / 6;
}
 
// Driver code
$n = 4;
echo(seriesSum($n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
// javascript program to find sum
// series 1, 3, 6, 10, 15, 21...
// and then find its sum
 
// Function to find the sum of series
function seriesSum(n)
{
    return (n * (n + 1) * (n + 2)) / 6;
}
 
// Driver code
var n = 4;
document.write( seriesSum(n));
 
// This code is contributed by shikhasingrajput
</script>


Output

20

Time Complexity: O(1), as constant operations are being performed.
Auxiliary Space: O(1), as constant extra space is required.


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 05 Sep, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials