# Sum of Digits in a^n till a single digit

Last Updated : 21 Mar, 2023

Given two numbers a and n, the task is to find the single sum of digits of a^n (pow(a, n)). In single digit sum, we keep doing sum of digit until a single digit is left.

Examples:

```Input : a = 5, n = 4
Output : 4
5^4 = 625 = 6+2+5 = 13
Since 13 has two digits, we
sum again 1 + 3 = 4.

Input : a = 2, n = 8
Output : 4
2^8=256 = 2+5+6 = 13 = 1+3 = 4```

A naive approach is to first find a^n, then find sum of digits in a^n using the approach discussed here.

The above approach may cause overflow. A better solution is based on below observation.

```int res = 1;
for (int i=1; i<=n; i++)
{
res = res*a;
res = digSum(res);
}

Here digSum() finds single digit sum
of res. Please refer this for details
of digSum().```

Illustration of above pseudo code:

For example, let a = 5, n = 4.
After first iteration,
res = 5
After second iteration,
res = 7 (Note : 2 + 5 = 7)
After third iteration,
res = 8 (Note : 3 + 5 = 8)
After 4th iteration,
res = 4 (Note : 4 + 0 = 4)

We can write a function similar to a fast modular exponentiation to evaluate digSum(a^n) which evaluates this in log(n) steps.
Below is the implementation of above approach:

## C++

 `// CPP program to find single digit` `// sum of a^n.` `#include ` `using` `namespace` `std;`   `// This function finds single digit` `// sum of n.` `int` `digSum(``int` `n) ` `{ ` `    ``if` `(n == 0) ` `    ``return` `0; ` `    ``return` `(n % 9 == 0) ? 9 : (n % 9); ` `} `   `// Returns single digit sum of a^n.` `// We use modular exponentiation technique.` `int` `powerDigitSum(``int` `a, ``int` `n)` `{` `    ``int` `res = 1;` `    ``while` `(n) {` `        ``if` `(n % 2 == 1) {` `            ``res = res * digSum(a);` `            ``res = digSum(res);` `        ``}` `        ``a = digSum(digSum(a) * digSum(a));` `        ``n /= 2;` `    ``}`   `    ``return` `res;` `}`   `// Driver code` `int` `main()` `{` `    ``int` `a = 9, n = 4;` `    ``cout << powerDigitSum(a, n);` `    ``return` `0;` `}`

## Java

 `// Java program to find single digit ` `// sum of a^n. `   `import` `java.util.*;` `import` `java.lang.*;` `import` `java.io.*;`   `class` `GFG{` `    `  `    `  `// This function finds single digit ` `// sum of n. ` `static` `int` `digSum(``int` `n) ` `{ ` `    ``if` `(n == ``0``) ` `    ``return` `0``; ` `    ``return` `(n % ``9` `== ``0``) ? ``9` `: (n % ``9``); ` `} `   `// Returns single digit sum of a^n. ` `// We use modular exponentiation technique. ` `static` `int` `powerDigitSum(``int` `a, ``int` `n) ` `{ ` `    ``int` `res = ``1``; ` `    ``while` `(n>``0``) { ` `        ``if` `(n % ``2` `== ``1``) { ` `            ``res = res * digSum(a); ` `            ``res = digSum(res); ` `        ``} ` `        ``a = digSum(digSum(a) * digSum(a)); ` `        ``n /= ``2``; ` `    ``} `   `    ``return` `res; ` `} `   `// Driver code` `public` `static` `void` `main(String args[]) ` `{ ` `    ``int` `a = ``9``, n = ``4``; ` `    ``System.out.print(powerDigitSum(a, n)); ` `}` `} `

## Python 3

 `# Python 3 Program to find single digit ` `# sum of a^n. `   `# This function finds single digit ` `# sum of n.` `def` `digSum(n) :`   `    ``if` `n ``=``=` `0` `:` `        ``return` `0`   `    ``elif` `n ``%` `9` `=``=` `0` `:` `        ``return` `9`   `    ``else` `:` `        ``return` `n ``%` `9`   `# Returns single digit sum of a^n. ` `# We use modular exponentiation technique.` `def` `powerDigitSum(a, n) :`   `    ``res ``=` `1` `    ``while``(n) :`   `        ``if` `n ``%``2` `=``=` `1` `:` `            ``res ``=` `res ``*` `digSum(a)` `            ``res ``=` `digSum(res)`   `        ``a ``=` `digSum(digSum(a) ``*` `digSum(a))` `        ``n ``/``/``=` `2`   `    ``return` `res`     `# Driver Code` `if` `__name__ ``=``=` `"__main__"` `:`   `    ``a, n ``=` `9``, ``4` `    ``print``(powerDigitSum(a, n))`   `# This code is contributed by ANKITRAI1`

## C#

 `// C# program to find single ` `// digit sum of a^n. ` `class` `GFG` `{`   `// This function finds single ` `// digit sum of n. ` `static` `int` `digSum(``int` `n) ` `{ ` `    ``if` `(n == 0) ` `    ``return` `0; ` `    ``return` `(n % 9 == 0) ? ` `                      ``9 : (n % 9); ` `} `   `// Returns single digit sum of a^n. ` `// We use modular exponentiation ` `// technique. ` `static` `int` `powerDigitSum(``int` `a, ``int` `n) ` `{ ` `    ``int` `res = 1; ` `    ``while` `(n > 0) ` `    ``{ ` `        ``if` `(n % 2 == 1) ` `        ``{ ` `            ``res = res * digSum(a); ` `            ``res = digSum(res); ` `        ``} ` `        ``a = digSum(digSum(a) * digSum(a)); ` `        ``n /= 2; ` `    ``} `   `    ``return` `res; ` `} `   `// Driver code` `static` `void` `Main() ` `{ ` `    ``int` `a = 9, n = 4; ` `    ``System.Console.WriteLine(powerDigitSum(a, n)); ` `}` `} `   `// This Code is contributed by mits`

## PHP

 ``

## Javascript

 ``

Output:

`9`

Time Complexity: O(log2n)// since in the powerDigitSum function in every call the value of n is divided by 2 until it reaches 1 thus the algorithm takes logarithmic time to execute.

Auxiliary Space: O(1) // since no extra array is used so the space taken by the algorithm is constant

Previous
Next