Maximum of sum and product of digits until number is reduced to a single digit

Given a number N, the task is to print the maximum between the sum and multiplication of the digits of the given number until the number is reduced to a single digit.

Note: Sum and multiplication of digits to be done until the number is reduced to a single digit.

Let’s take an example where N = 19,



19 breaks into 1+9=10 then 10 breaks into 1+0=1. 1 is a single digit sum.
Also, 19 breaks into 1*9 = 9. 9 is a single digit multiplication.
So, output is 9 i.e. maximum of 9 and 1.

Input: N = 631
Output: 8

Input: 110
Output: 2

Approach:

  1. Check if a number is less than 10 then sum and product will be the same. So, return that number.
  2. Else,
  3. Return maximum of both.

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP implementation of above approach
#include<bits/stdc++.h>
using namespace std;
    // Function to sum the digits until it
    // becomes a single digit
    long repeatedSum(long n)
    {
        if (n == 0)
            return 0;
        return (n % 9 == 0) ? 9 : (n % 9);
    }
  
    // Function to product the digits until it
    // becomes a single digit
    long repeatedProduct(long n)
    {
        long prod = 1;
  
        // Loop to do sum while
        // sum is not less than
        // or equal to 9
        while (n > 0 || prod > 9) {
            if (n == 0) {
                n = prod;
                prod = 1;
            }
            prod *= n % 10;
            n /= 10;
        }
        return prod;
    }
  
    // Function to find the maximum among
    // repeated sum and repeated product
    long maxSumProduct(long N)
    {
  
        if (N < 10)
            return N;
  
        return max(repeatedSum(N), repeatedProduct(N));
    }
  
    // Driver code
    int main()
    {
  
        long n = 631;
        cout << maxSumProduct(n)<<endl;
        return 0;
    }
// This code is contributed by mits

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
import java.util.*;
import java.lang.*;
import java.io.*;
  
class GFG {
  
    // Function to sum the digits until it
    // becomes a single digit
    public static long repeatedSum(long n)
    {
        if (n == 0)
            return 0;
        return (n % 9 == 0) ? 9 : (n % 9);
    }
  
    // Function to product the digits until it
    // becomes a single digit
    public static long repeatedProduct(long n)
    {
        long prod = 1;
  
        // Loop to do sum while
        // sum is not less than
        // or equal to 9
        while (n > 0 || prod > 9) {
            if (n == 0) {
                n = prod;
                prod = 1;
            }
            prod *= n % 10;
            n /= 10;
        }
        return prod;
    }
  
    // Function to find the maximum among
    // repeated sum and repeated product
    public static long maxSumProduct(long N)
    {
  
        if (N < 10)
            return N;
  
        return Math.max(repeatedSum(N), repeatedProduct(N));
    }
  
    // Driver code
    public static void main(String[] args)
    {
  
        long n = 631;
        System.out.println(maxSumProduct(n));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of above approach
  
# Function to sum the digits until 
# it becomes a single digit
def repeatedSum(n):
    if (n == 0):
        return 0
    return 9 if(n % 9 == 0) else (n % 9)
  
# Function to product the digits 
# until it becomes a single digit
def repeatedProduct(n):
    prod = 1
  
    # Loop to do sum while
    # sum is not less than
    # or equal to 9
    while (n > 0 or prod > 9) :
        if (n == 0) :
            n = prod
            prod = 1
              
        prod *= n % 10
        n //= 10
      
    return prod
  
# Function to find the maximum among
# repeated sum and repeated product
def maxSumProduct(N):
  
    if (N < 10):
        return N
  
    return max(repeatedSum(N), 
               repeatedProduct(N))
  
# Driver code
if __name__ == "__main__":
  
    n = 631
    print(maxSumProduct(n))
  
# This code is contributed 
# by ChitraNayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of 
// above approach
using System;
class GFG 
{
  
// Function to sum the digits 
// until it becomes a single digit
public static long repeatedSum(long n)
{
    if (n == 0)
        return 0;
    return (n % 9 == 0) ? 
                      9 : (n % 9);
}
  
// Function to product the digits 
// until it becomes a single digit
public static long repeatedProduct(long n)
{
    long prod = 1;
  
    // Loop to do sum while
    // sum is not less than
    // or equal to 9
    while (n > 0 || prod > 9) 
    {
        if (n == 0) 
        {
            n = prod;
            prod = 1;
        }
        prod *= n % 10;
        n /= 10;
    }
    return prod;
}
  
// Function to find the maximum among
// repeated sum and repeated product
public static long maxSumProduct(long N)
{
  
    if (N < 10)
        return N;
  
    return Math.Max(repeatedSum(N), 
                    repeatedProduct(N));
}
  
// Driver code
public static void Main()
{
    long n = 631;
    Console.WriteLine(maxSumProduct(n));
}
}
  
// This code is contributed
// by inder_verma

chevron_right


Output:

8


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.