Sum of degrees of all nodes of a undirected graph

Given an edge list of a graph we have to find the sum of degree of all nodes of a undirected graph.
Example

Examples:

Input : edge list : (1, 2), (2, 3), (1, 4), (2, 4)  
Output : sum= 8

Brute force approach
We will add the degree of each node of the graph and print the sum.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
// returns the sum of degree of all
// the nodes in a undirected graph
int count(int edges[][2], int len, int n)
{
    int degree[n + 1] = { 0 };
  
    // compute the degree of each node
    for (int i = 0; i < len; i++) {
  
        // increase the degree of the
        // nodes
        degree[edges[i][0]]++;
        degree[edges[i][1]]++;
    }
  
    // calculate the sum of degree
    int sum = 0;
    for (int i = 1; i <= n; i++)
        sum += degree[i];
  
    return sum;
}
  
// main function
int main()
{
    // the edge list
    int edges[][2] = { { 1, 2 },
                       { 2, 3 },
                       { 1, 4 },
                       { 2, 4 } };
    int len = sizeof(edges) / (sizeof(int) * 2), n = 4;
  
    // display the result
    cout << "sum = " << count(edges, len, n) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // returns the sum of degree of all
    // the nodes in a undirected graph
    static int count(int edges[][], int len, int n)
    {
        int degree[] = new int[n + 1];
  
        // compute the degree of each node
        for (int i = 0; i < len; i++) {
  
            // increase the degree of the
            // nodes
            degree[edges[i][0]]++;
            degree[edges[i][1]]++;
        }
  
        // calculate the sum of degree
        int sum = 0;
        for (int i = 1; i <= n; i++)
            sum += degree[i];
  
        return sum;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        // the edge list
        int edges[][] = { { 1, 2 },
                          { 2, 3 },
                          { 1, 4 },
                          { 2, 4 } };
        int len = edges.length, n = 4;
  
        // display the result
        System.out.println("sum = " + count(edges, len, n));
    }
}
  
// This code has been contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of above approach
  
# returns the sum of degree of all
# the nodes in a undirected graph
def count(edges, len1, n):
    degree = [0 for i in range(n + 1)]
  
    # compute the degree of each node
    for i in range(len1):
        # increase the degree of the
        # nodes
        degree[edges[i][0]] += 1
        degree[edges[i][1]] += 1
  
    # calculate the sum of degree
    sum = 0
    for i in range(1, n + 1, 1):
        sum += degree[i]
  
    return sum
  
# main function
if __name__ == '__main__':
    # the edge list
    edges = [[1, 2], [2, 3], [1, 4], [2, 4]]
    len1 = len(edges)
    n = 4
  
    # display the result
    print("sum =", count(edges, len1, n))
      
# This code is contributed by
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG {
  
    // returns the sum of degree of all
    // the nodes in a undirected graph
    static int count(int[][] edges, int len, int n)
    {
        int[] degree = new int[n + 1];
  
        // compute the degree of each node
        for (int i = 0; i < len; i++) {
  
            // increase the degree of the
            // nodes
            degree[edges[i][0]]++;
            degree[edges[i][1]]++;
        }
  
        // calculate the sum of degree
        int sum = 0;
        for (int i = 1; i <= n; i++)
            sum += degree[i];
  
        return sum;
    }
  
    // Driver code
    public static void Main()
    {
        // the edge list
        int[][] edges = new int[][] { new int[] { 1, 2 },
                                      new int[] { 2, 3 },
                                      new int[] { 1, 4 },
                                      new int[] { 2, 4 } };
        int len = edges.Length, n = 4;
  
        // display the result
        Console.WriteLine("sum = " + count(edges, len, n));
    }
}
  
// This code has been contributed by Code_Mech.

chevron_right


PHP

Output:

sum = 8

Efficient approach
If we get the number of the edges in a directed graph then we can find the sum of degree of the graph. Let us consider an graph with no edges. If we add a edge we are increasing the degree of two nodes of graph by 1, so after adding each edge the sum of degree of nodes increases by 2, hence the sum of degree is 2*e.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
// returns the sum of degree of all
// the nodes in a undirected graph
int count(int edges[][2], int len)
{
    return 2 * len;
}
  
// main function
int main()
{
    // the edge list
    int edges[][2] = { { 1, 2 },
                       { 2, 3 },
                       { 1, 4 },
                       { 2, 4 } };
    int len = sizeof(edges) / (sizeof(int) * 2);
  
    // display the result
    cout << "sum = " << count(edges, len) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation for above approach
class GFG {
  
    // returns the sum of degree of all
    // the nodes in a undirected graph
    static int count(int edges[][], int len)
    {
        return 2 * len;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        // the edge list
        int edges[][] = { { 1, 2 },
                          { 2, 3 },
                          { 1, 4 },
                          { 2, 4 } };
        int len = edges.length;
  
        // display the result
        System.out.println("sum = " + count(edges, len));
    }
}
  
// This code contributed by Rajput-Ji

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach 
  
# returns the sum of degree of all 
# the nodes in a undirected graph 
def count(edges, length) :
      
    return 2 * length; 
  
# Driver Code
if __name__ == "__main__"
  
    # the edge list 
    edges = [[ 1, 2 ], 
             [ 2, 3 ], 
             [ 1, 4 ], 
             [ 2, 4 ]]; 
    length = len(edges);
  
    # display the result 
    print("sum = ", count(edges, length)); 
  
# This code is contributed by Ryuga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation for above approach
using System;
  
class GFG {
  
    // returns the sum of degree of all
    // the nodes in a undirected graph
    static int count(int[, ] edges, int len)
    {
        return 2 * len;
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        // the edge list
        int[, ] edges = { { 1, 2 },
                          { 2, 3 },
                          { 1, 4 },
                          { 2, 4 } };
        int len = edges.GetLength(0);
  
        // display the result
        Console.WriteLine("sum = " + count(edges, len));
    }
}
  
/* This code contributed by PrinciRaj1992 */

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of above approach
  
// returns the sum of degree of all
// the nodes in a undirected graph
function count1($edges, $len)
{
    return 2 * $len;
}
  
// Driver Code
  
// the edge list
$edges = array(array(1, 2),
               array(2, 3),
               array(1, 4),
               array(2, 4));
$len = sizeof($edges);
  
// display the result
echo "sum = " . count1($edges, $len) . "\n";
  
// This code is contributed
// by Akanksha Rai
?>

chevron_right



Output:

sum = 8


My Personal Notes arrow_drop_up

Second year Department of Information Technology Jadavpur University

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.