Smallest value in each level of Binary Tree

Given a binary tree containing n nodes, the task is to print minimum element in each level of binary tree.

Examples:

Input : 
            7
         /    \
        6       5
       / \     / \
      4  3     2  1  
       
Output : 
Every level minimum is
level 0 min is = 7
level 1 min is = 5
level 2 min is = 1

Input :  
            7
          /    \
        16       1
       / \      
      4   13    

Output :
Every level minimum is
level 0 min is = 7
level 1 min is = 1
level 2 min is = 4



Method 1: Using In-order traversal
Approach:- The idea is to recursively traverse tree in a in-order fashion. Root is considered to be at zeroth level. First find the height of tree and store it into res. res array store every smallest element in each level of binary tree.

Below is the implementation to find smallest value on each level of Binary Tree.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to print smallest element
// in each level of binary tree.
#include <iostream>
#include <vector>
#define INT_MAX 10e6
using namespace std;
  
// A Binary Tree Node
struct Node {
    int data;
    struct Node *left, *right;
};
  
// return height of tree
int heightoftree(Node* root)
{
  
    if (root == NULL)
        return 0;
  
    int left = heightoftree(root->left);
    int right = heightoftree(root->right);
  
    return ((left > right ? left : right) + 1);
}
  
// Inorder Traversal
// Search minimum element in each level and 
// store it into vector array.
void printPerLevelMinimum(Node* root, 
                  vector<int>& res, int level)
{
      
    if (root != NULL) {
  
        printPerLevelMinimum(root->left,
                              res, level + 1);
  
        if (root->data < res[level])
            res[level] = root->data;
  
        printPerLevelMinimum(root->right, 
                              res, level + 1);
    }
}
  
void perLevelMinimumUtility(Node* root)
{
      
    // height of tree for the size of 
    // vector array
    int n = heightoftree(root), i;
  
    // vector for store all minimum of 
    // every level
    vector<int> res(n, INT_MAX);
  
    // save every level minimum using 
    // inorder traversal
    printPerLevelMinimum(root, res, 0);
  
    // print every level minimum
    cout << "Every level minimum is\n";
    for (i = 0; i < n; i++) {
        cout << "level " << i <<" min is = "
                            << res[i] << "\n";
    }
}
  
// Utility function to create a new tree node
Node* newNode(int data)
{
    Node* temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
  
    return temp;
}
  
// Driver program to test above functions
int main()
{
  
    // Let us create binary tree shown 
    // in above diagram
    Node* root = newNode(7);
    root->left = newNode(6);
    root->right = newNode(5);
    root->left->left = newNode(4);
    root->left->right = newNode(3);
    root->right->left = newNode(2);
    root->right->right = newNode(1);
  
    /*       7
         /  \
        6     5
       / \     / \
      4   3 2   1         */
    perLevelMinimumUtility(root);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print smallest element
// in each level of binary tree.
import java.util.Arrays;
class GFG
{
static int INT_MAX = (int) 10e6;
  
// A Binary Tree Node
static class Node 
{
    int data;
    Node left, right;
};
  
// return height of tree
static int heightoftree(Node root)
{
    if (root == null)
        return 0;
  
    int left = heightoftree(root.left);
    int right = heightoftree(root.right);
  
    return ((left > right ? left : right) + 1);
}
  
// Inorder Traversal
// Search minimum element in each level and 
// store it into vector array.
static void printPerLevelMinimum(Node root, 
                      int []res, int level)
{
    if (root != null
    {
        printPerLevelMinimum(root.left,
                             res, level + 1);
  
        if (root.data < res[level])
            res[level] = root.data;
  
        printPerLevelMinimum(root.right, 
                             res, level + 1);
    }
}
  
static void perLevelMinimumUtility(Node root)
{
      
    // height of tree for the size of 
    // vector array
    int n = heightoftree(root), i;
  
    // vector for store all minimum of 
    // every level
    int []res = new int[n];
    Arrays.fill(res, INT_MAX);
  
    // save every level minimum using 
    // inorder traversal
    printPerLevelMinimum(root, res, 0);
  
    // print every level minimum
    System.out.print("Every level minimum is\n");
    for (i = 0; i < n; i++) 
    {
        System.out.print("level " + i + 
                         " min is = "
                        res[i] + "\n");
    }
}
  
// Utility function to create a new tree node
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
  
    return temp;
}
  
// Driver Code
public static void main(String[] args)
{
  
    // Let us create binary tree shown 
    // in above diagram
    Node root = newNode(7);
    root.left = newNode(6);
    root.right = newNode(5);
    root.left.left = newNode(4);
    root.left.right = newNode(3);
    root.right.left = newNode(2);
    root.right.right = newNode(1);
  
    /*     7
        / \
        6     5
    / \     / \
    4 3 2 1         */
    perLevelMinimumUtility(root);
}
  
// This code is contributed by PrinciRaj1992

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print smallest element
// in each level of binary tree.
using System;
  
class GFG
{
static int INT_MAX = (int) 10e6;
  
// A Binary Tree Node
public class Node 
{
    public int data;
    public Node left, right;
};
  
// return height of tree
static int heightoftree(Node root)
{
    if (root == null)
        return 0;
  
    int left = heightoftree(root.left);
    int right = heightoftree(root.right);
  
    return ((left > right ? left : right) + 1);
}
  
// Inorder Traversal
// Search minimum element in each level and 
// store it into vector array.
static void printPerLevelMinimum(Node root, 
                                 int []res, 
                                 int level)
{
    if (root != null
    {
        printPerLevelMinimum(root.left,
                             res, level + 1);
  
        if (root.data < res[level])
            res[level] = root.data;
  
        printPerLevelMinimum(root.right, 
                             res, level + 1);
    }
}
  
static void perLevelMinimumUtility(Node root)
{
      
    // height of tree for the size of 
    // vector array
    int n = heightoftree(root), i;
  
    // vector for store all minimum of 
    // every level
    int []res = new int[n];
    for (i = 0; i < n; i++)
        res[i] = INT_MAX;
  
    // save every level minimum using 
    // inorder traversal
    printPerLevelMinimum(root, res, 0);
  
    // print every level minimum
    Console.Write("Every level minimum is\n");
    for (i = 0; i < n; i++) 
    {
        Console.Write("level " + i + 
                      " min is = "
                     res[i] + "\n");
    }
}
  
// Utility function to create a new tree node
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
  
    return temp;
}
  
// Driver Code
public static void Main(String[] args)
{
  
    // Let us create binary tree shown 
    // in above diagram
    Node root = newNode(7);
    root.left = newNode(6);
    root.right = newNode(5);
    root.left.left = newNode(4);
    root.left.right = newNode(3);
    root.right.left = newNode(2);
    root.right.right = newNode(1);
  
    /*     7
        / \
        6     5
    / \     / \
    4 3 2 1         */
    perLevelMinimumUtility(root);
}
  
// This code is contributed by Princi Singh

chevron_right


Output:

Every level minimum is
level 0 min is = 7
level 1 min is = 5
level 2 min is = 1

Method 2: Using level order Traversal
Approach:- The idea is to perform iterative level order traversal of the binary tree using queue. While traversing keep min variable which stores the minimum element of the current level of the tree being processed. When the level is completely traversed, print that min value.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to print minimum element
// in each level of binary tree.
#include <iostream>
#include <queue>
#include <vector>
#define INT_MAX 10e6
using namespace std;
  
// A Binary Tree Node
struct Node {
    int data;
    struct Node *left, *right;
};
  
// return height of tree
int heightoftree(Node* root)
{
  
    if (root == NULL)
        return 0;
  
    int left = heightoftree(root->left);
    int right = heightoftree(root->right);
  
    return ((left > right ? left : right) + 1);
}
  
// Iterative method to find every level
// minimum element of Binary Tree
void printPerLevelMinimum(Node* root)
{
  
    // Base Case
    if (root == NULL)
        return ;
  
    // Create an empty queue for 
    // level order traversal
    queue<Node*> q;
  
    // push the root for Change the level
    q.push(root);
  
    // for go level by level
    q.push(NULL);
  
    int min = INT_MAX;
    // for check the level
    int level = 0;
  
    while (q.empty() == false) {
  
        // Get top of queue
        Node* node = q.front();
        q.pop();
  
        // if node == NULL (Means this is 
        // boundary between two levels)
        if (node == NULL) {
  
            cout << "level " << level << 
             " min is = " << min << "\n";
  
            // here queue is empty represent
            // no element in the actual
            // queue
            if (q.empty())
                break;
  
            q.push(NULL);
  
            // increment level
            level++;
  
            // Reset min for next level 
            // minimum value
            min = INT_MAX;
  
            continue;
        }
  
        // get Minimum in every level
        if (min > node->data)
            min = node->data;
  
        /* Enqueue left child */
        if (node->left != NULL) {
            q.push(node->left);
        }
  
        /*Enqueue right child */
        if (node->right != NULL) {
            q.push(node->right);
        }
    }
}
  
// Utility function to create a 
// new tree node
Node* newNode(int data)
{
      
    Node* temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
      
    return temp;
}
  
// Driver program to test above functions
int main()
{
      
    // Let us create binary tree shown 
    // in above diagram
    Node* root = newNode(7);
    root->left = newNode(6);
    root->right = newNode(5);
    root->left->left = newNode(4);
    root->left->right = newNode(3);
    root->right->left = newNode(2);
    root->right->right = newNode(1);
  
    /*      7
        /  \
       6    5
      / \  / \
     4  3 2   1         */
  
    cout << "Every Level minimum is"
        << "\n";
          
    printPerLevelMinimum(root);
      
    return 0;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to prminimum element 
# in each level of binary tree. 
  
# Importing Queue
from queue import Queue
  
# Utility class to create a 
# new tree node 
class newNode:
    def __init__(self, data):
        self.data = data 
        self.left = self.right = None
      
# return height of tree p
def heightoftree(root):
  
    if (root == None): 
        return 0
  
    left = heightoftree(root.left) 
    right = heightoftree(root.right) 
    if left > right:
        return left + 1
    else:
        return right + 1
          
# Iterative method to find every level 
# minimum element of Binary Tree 
def printPerLevelMinimum(root):
  
    # Base Case 
    if (root == None): 
        return
  
    # Create an empty queue for 
    # level order traversal 
    q = Queue() 
  
    # put the root for Change the level 
    q.put(root) 
  
    # for go level by level 
    q.put(None
  
    Min = 9999999999999
      
    # for check the level 
    level = 0
  
    while (q.empty() == False): 
  
        # Get get of queue 
        node = q.queue[0
        q.get() 
  
        # if node == None (Means this is 
        # boundary between two levels) 
        if (node == None): 
  
            print("level", level, "min is =", Min
  
            # here queue is empty represent 
            # no element in the actual 
            # queue 
            if (q.empty()): 
                break
  
            q.put(None
  
            # increment level 
            level += 1
  
            # Reset min for next level 
            # minimum value 
            Min = 999999999999
  
            continue
  
        # get Minimum in every level 
        if (Min > node.data): 
            Min = node.data 
  
        # Enqueue left child 
        if (node.left != None): 
            q.put(node.left) 
  
        #Enqueue right child 
        if (node.right != None): 
            q.put(node.right)
  
# Driver Code
if __name__ == '__main__':
      
    # Let us create binary tree shown 
    # in above diagram 
    root = newNode(7
    root.left = newNode(6
    root.right = newNode(5
    root.left.left = newNode(4
    root.left.right = newNode(3
    root.right.left = newNode(2
    root.right.right = newNode(1
  
    #     7 
    # / \ 
    # 6 5 
    # / \ / \ 
    # 4 3 2 1         
    print("Every Level minimum is")
          
    printPerLevelMinimum(root)
  
# This code is contributed by PranchalK

chevron_right



Output:

Every level minimum is
level 0 min is = 7
level 1 min is = 5
level 2 min is = 1


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.