Smallest Greater Element on Right Side
3Given an array of distinct elements, print the closest greater element for every element. The closest greater element for an element x is the smallest element on the right side of x in array which is greater than x. Elements for which no greater element exist, consider next greater element as -1.
Examples:
Input: arr[] = {4, 5, 2, 25} Output: Element NGE 4 --> 5 5 --> 25 2 --> 25 25 --> -1 Input: arr[] = {4, 10, 7} Output: Element NGE 4 --> 7 10 --> -1 7 --> -1
Approach: In this post, we will be discussing how to find the Next Greater Element using C++ STL(set).
Finding the smallest greater element on the right side will be like finding the first greater element of the current element in a list that is sorted.
Consider example 1, The sorted list would look like 2, 4, 5, 25.
Here for element 4, the greater element is 5 as it is next to it, so we print 5 and remove 4 because it would not be greater to the other elements since it is no longer on anyone’s right.
Similarly, for 5 it is 25 and we remove 5 from the list, as 5 will not be on the right side of 2 or 25, so it can be deleted.
Given below are the steps to find the Next Greater Element of every index element.
- Insert all the elements in a Set, it will store all the elements in an increasing order.
- Iterate on the array of elements, and for each index, find the upper_bound of the current index element. The upper_bound() returns an iterator which can point to the following position.
- If the iterator is pointing to a position past the last element, then there exists no NGE to the current index element.
- If the iterator points to a position referring to an element, then that element is the NGE to the current index element.
- Find the position of current index element at every traversal and remove it from the set using >lower_bound() and erase() functions of set.
Implementation:
C++
// C++ program to print the // NGE's of array elements using // C++ STL #include <bits/stdc++.h> using namespace std; // Function to print the NGE void printNGE( int a[], int n) { set< int > ms; // insert in the multiset container for ( int i = 0; i < n; i++) ms.insert(a[i]); cout << "Element " << "NGE" ; // traverse for all array elements for ( int i = 0; i < n; i++) { // find the upper_bound in set auto it = ms.upper_bound(a[i]); // if points to the end, then // no NGE of that element if (it == ms.end()) { cout << "\n " << a[i] << " ----> " << -1; } // print the element at that position else { cout << "\n " << a[i] << " ----> " << *it; } // find the first occurrence of // the index element and delete it it = ms.lower_bound(a[i]); // delete one occurrence // from the container ms.erase(it); } } // Driver Code int main() { int a[] = { 4, 5, 2, 25 }; int n = sizeof (a) / sizeof (a[0]); // Function call to print the NGE printNGE(a, n); return 0; } |
Java
// C++ program to print the // NGE's of array elements using import java.util.TreeSet; class Geeks { // Function to print the NGE static void printNGE( int [] a, int n) { // Tree Set is an ordered set used to // store elements in a sorted manner TreeSet<Integer> t = new TreeSet<>(); // Adding elements into the set for ( int i = 0 ; i < n; i++) t.add(a[i]); System.out.println( "ELEMENT NGE" ); for ( int i = 0 ; i < n; i++) { // If the elements does not have an upper bound // or an element greater than it, // higher method of TreeSet class will return NULL if (t.higher(a[i]) == null ) System.out.println(a[i] + " ----> " + "-1" ); // Otherwise print the upper bound of that element else System.out.println(a[i] + " ----> " + t.higher(a[i])); // Remove the current element from the set t.remove(a[i]); } } // Driver code public static void main(String[] args) { int a[] = { 4 , 5 , 2 , 25 }; int n = a.length; printNGE(a, n); } } |
Python3
# Python3 program to print the # NGE's of array elements from bisect import bisect_right as upper_bound, \ bisect_left as lower_bound # Function to print the NGE def printNGE(a: list , n): ms = set () # insert in the multiset container for i in range (n): ms.add(a[i]) print ( "Element NGE" , end = "") # Required because Python sets # are not sorted new_arr = list (ms) new_arr.sort() # traverse for all array elements for i in range (n): # find the upper_bound in set it = upper_bound(new_arr, a[i]) # if points to the end, then # no NGE of that element if (it = = len (new_arr)): print ( "\n %d ----> -1" % a[i], end = "") # print the element at that position else : print ( "\n %d ----> %d" % (a[i], new_arr[it]), end = "") # find the first occurrence of # the index element and delete it it = lower_bound(new_arr, a[i]) # delete one occurrence # from the container new_arr.remove(new_arr[it]) # Driver Code if __name__ = = "__main__" : a = [ 4 , 5 , 2 , 25 ] n = len (a) # Function call to print the NGE printNGE(a, n) # This code is contributed by # sanjeev2552 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class Geeks { // Function to print the NGE static void printNGE( int [] a, int n) { // insert in the multiset container of array a SortedSet< int > s = new SortedSet< int >(a); Console.WriteLine( "Element NGE" ); // traverse for all array elements for ( int i = 0; i < n; i++) { SortedSet< int >.Enumerator enumr = s.GetViewBetween(a[i] + 1, int .MaxValue).GetEnumerator(); // if points to the end, then // no NGE of that element if (!enumr.MoveNext()) { Console.WriteLine($ "{a[i]} ----> -1" ); } // print the element at that position else { Console.WriteLine($ "{a[i]} ----> {enumr.Current}" ); } // delete one occurrence // from the container s.Remove(a[i]); } } // Driver Code public static void Main() { int [] a = { 4, 5, 2, 25 }; int n = a.Length; // Function call to print the NGE printNGE(a, n); } } // This code is contributed by codebraxnzt |
Javascript
<script> // Javascript program to print the // NGE's of array elements using // Function to print the NGE function printNGE(a , n) { // Tree Set is an ordered set used to // store elements in a sorted manner var t = new Set(); // Adding elements into the set for ( var i = 0; i < n; i++) t.add(a[i]); document.write( "ELEMENT NGE<br/>" ); for (i = 0; i < n; i++) { // If the elements does not have an upper bound // or an element greater than it, // higher method of TreeSet class will return NULL if (upper_bound(t,a[i]) == null ) document.write(a[i] + " ----> " + "-1" + "<br/>" ); // Otherwise print the upper bound of that element else document.write(a[i] + " ----> " + upper_bound(t,a[i])+ "<br/>" ); // Remove the current element from the set t. delete (a[i]); } } function upper_bound(s, val) { let temp = [...s]; temp.sort((a, b) => b - a); return temp[temp.indexOf(val) + 1]; } // Driver code var a = [ 4, 5, 2, 25 ]; var n = a.length; printNGE(a, n); // This code contributed by Rajput-Ji </script> |
Element NGE 4 ----> 5 5 ----> 25 2 ----> 25 25 ----> -1
Complexity Analysis:
- Time Complexity: O(N*logN), as we are using a loop to traverse N times and in each traversal we are inserting to the set which will cost us logN time.
- Auxiliary Space: O(N), as we are using extra space for set ms.
Please Login to comment...