Smallest and Largest N-digit perfect cubes

Given an integer N, the task is to find the smallest and the largest N digit numbers which are also perfect cubes.

Examples:

Input: N = 2
Output: 27 64
27 and 64 are the smallest and the largest 2-digit numbers which are also perfect cubes.



Input: N = 3
Output: 125 729

Approach: For increasing values of N starting from N = 1, the series will go on like 8, 64, 729, 9261, ….. for the largest N-digit perfect cube whose Nth term will be pow(ceil(cbrt(pow(10, (n))))-1, 3).
And 1, 27, 125, 1000, ….. for the smallest N-digit perfect cube whose Nth term will be pow(ceil(cbrt(pow(10, (n – 1)))), 3).

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to print the largest and
// the smallest n-digit perfect cube
void nDigitPerfectCubes(int n)
{
  
    // Smallest n-digit perfect cube
    cout << pow(ceil(cbrt(pow(10, (n - 1)))), 3) << " ";
  
    // Largest n-digit perfect cube
    cout << (int)pow(ceil(cbrt(pow(10, (n)))) - 1, 3);
}
  
// Driver code
int main()
{
    int n = 3;
    nDigitPerfectCubes(n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function to print the largest and
    // the smallest n-digit perfect cube
    static void nDigitPerfectCubes(int n)
    {
  
        // Smallest n-digit perfect cube
        int smallest = (int)Math.pow(Math.ceil(Math.cbrt(Math.pow(10, (n - 1)))), 3);
        System.out.print(smallest + " ");
  
        int largest = (int)Math.pow(Math.ceil(Math.cbrt(Math.pow(10, (n)))) - 1, 3);
        System.out.print(largest);
    }
  
    // Driver code
    public static void main(String args[])
    {
        int n = 3;
        nDigitPerfectCubes(n);
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
from math import ceil
  
# Function to print the largest and 
# the smallest n-digit perfect cube 
def nDigitPerfectCubes(n): 
  
    # Smallest n-digit perfect cube 
    print(pow(ceil((pow(10, (n - 1))) **
                       (1 / 3)), 3), end = " "
  
    # Largest n-digit perfect cube 
    print(pow(ceil((pow(10, (n))) ** 
                       (1 / 3)) - 1, 3)) 
  
# Driver code 
if __name__ == "__main__":
  
    n = 3
    nDigitPerfectCubes(n) 
  
# This code is contributed by Rituraj Jain

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG 
{
  
    // Function to print the largest and
    // the smallest n-digit perfect cube
    static void nDigitPerfectCubes(int n)
    {
  
        // Smallest n-digit perfect cube
        int smallest = (int)Math.Pow(Math.Ceiling(MathF.Cbrt((float)Math.Pow(10, (n - 1)))), 3);
        Console.Write(smallest + " ");
  
        int largest = (int)Math.Pow(Math.Ceiling(MathF.Cbrt((float)Math.Pow(10, (n)))) - 1, 3);
        Console.Write(largest);
    }
  
    // Driver code
    static void Main()
    {
        int n = 3;
        nDigitPerfectCubes(n);
    }
}
  
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function to print the largest and
// the smallest n-digit perfect cube
function nDigitPerfectCubes($n)
{
  
    // Smallest n-digit perfect cube
    print(pow(ceil(pow(pow(10, ($n - 1)),1/3)), 3)." ");
  
    // Largest n-digit perfect cube
    print((int)pow(ceil(pow(pow(10, ($n)),1/3)) - 1, 3));
}
  
// Driver code
$n = 3;
nDigitPerfectCubes($n);
  
// This code is contributed by mits
?>

chevron_right


Output:

125 729


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : rituraj_jain, Mithun Kumar