Related Articles

# Smallest and Largest N-digit perfect squares

• Difficulty Level : Medium
• Last Updated : 26 Mar, 2021

Given an integer N, the task is to find the smallest and the largest N digit numbers which are also perfect squares.
Examples:

Input: N = 2
Output: 16 81
16 and 18 are the smallest and the largest 2-digit perfect squares.
Input: N = 3
Output: 100 961

Approach: For increasing values of N starting from N = 1, the series will go on like 9, 81, 961, 9801, ….. for the largest N-digit perfect square whose Nth term will be pow(ceil(sqrt(pow(10, N))) – 1, 2)
And 1, 16, 100, 1024, ….. for the smallest N-digit perfect square whose Nth term will be pow(ceil(sqrt(pow(10, N – 1))), 2).
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to print the largest and``// the smallest n-digit perfect squares``void` `nDigitPerfectSquares(``int` `n)``{` `    ``// Smallest n-digit perfect square``    ``cout << ``pow``(``ceil``(``sqrt``(``pow``(10, n - 1))), 2) << ``" "``;` `    ``// Largest n-digit perfect square``    ``cout << ``pow``(``ceil``(``sqrt``(``pow``(10, n))) - 1, 2);``}` `// Driver code``int` `main()``{``    ``int` `n = 4;``    ``nDigitPerfectSquares(n);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG {` `    ``// Function to print the largest and``    ``// the smallest n-digit perfect squares``    ``static` `void` `nDigitPerfectSquares(``int` `n)``    ``{``        ``// Smallest n-digit perfect square``        ``int` `smallest = (``int``)Math.pow(Math.ceil(Math.sqrt(Math.pow(``10``, n - ``1``))), ``2``);``        ``System.out.print(smallest + ``" "``);` `        ``// Largest n-digit perfect square``        ``int` `largest = (``int``)Math.pow(Math.ceil(Math.sqrt(Math.pow(``10``, n))) - ``1``, ``2``);``        ``System.out.print(largest);``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String args[])``    ``{``        ``int` `n = ``4``;``        ``nDigitPerfectSquares(n);``    ``}``}`

## Python3

 `# Python3 implementation of the approach``import` `math` `# Function to print the largest and``# the smallest n-digit perfect squares``def` `nDigitPerfectSquares(n):` `    ``# Smallest n-digit perfect square``    ``print``(``pow``(math.ceil(math.sqrt(``pow``(``10``, n ``-` `1``))), ``2``),``                                            ``end ``=` `" "``);` `    ``# Largest n-digit perfect square``    ``print``(``pow``(math.ceil(math.sqrt(``pow``(``10``, n))) ``-` `1``, ``2``));` `# Driver code``n ``=` `4``;``nDigitPerfectSquares(n);` `# This code is contributed by mits`

## C#

 `// C# implementation of the approach``using` `System;``public` `class` `GFG {`` ` `    ``// Function to print the largest and``    ``// the smallest n-digit perfect squares``    ``static` `void` `nDigitPerfectSquares(``int` `n)``    ``{``        ``// Smallest n-digit perfect square``        ``int` `smallest = (``int``)Math.Pow(Math.Ceiling(Math.Sqrt(Math.Pow(10, n - 1))), 2);``        ``Console.Write(smallest + ``" "``);`` ` `        ``// Largest n-digit perfect square``        ``int` `largest = (``int``)Math.Pow(Math.Ceiling(Math.Sqrt(Math.Pow(10, n))) - 1, 2);``        ``Console.Write(largest);``    ``}`` ` `    ``// Driver code``    ``public` `static` `void` `Main(String []args)``    ``{``        ``int` `n = 4;``        ``nDigitPerfectSquares(n);``    ``}``}` `// This code has been contributed by 29AjayKumar`

## PHP

 ``

## Javascript

 ``
Output:
`1024 9801`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up