Related Articles
scipy stats.halfgennorm() | Python
• Last Updated : 07 Jun, 2019

scipy.stats.halfgennorm() is an upper half of a generalized normal continuous random variable. To complete its specificaitons, it is defined with a standard format and some shape parameters. The object object inherits from it a collection of generic methods and completes them with details specific.

Parameters :

```-> α : scale
-> β : shape
-> μ : location
```
Code #1 : Creating Half-generalized normal continuous random variable
 `from` `scipy.stats ``import` `halfgennorm  ``  ` `numargs ``=` `halfgennorm.numargs``[a] ``=` `[``0.7``, ] ``*` `numargs``rv ``=` `halfgennorm (a)``  ` `print` `(``"RV : \n"``, rv) `

Output:

```RV :
scipy.stats._distn_infrastructure.rv_frozen object at 0x0000021FB55D8DD8
```

Code #2 : Half-generalized random variates and probability distribution

 `import` `numpy as np``quantile ``=` `np.arange (``0.01``, ``1``, ``0.1``)``   ` `# Random Variates``R ``=` `halfgennorm .rvs(.``2``, scale ``=` `2``,  size ``=` `10``)``print` `(``"Random Variates : \n"``, R)``  ` `# PDF``R ``=` `halfgennorm .pdf(quantile, .``2``, loc ``=` `0``, scale ``=` `1``)``print` `(``"\nProbability Distribution : \n"``, R)`

Output:

```Random Variates :
[1.41299459e+03 3.51301175e+04 1.79981484e+05 2.90925518e+02
2.70178121e+05 1.31706797e+05 3.25898913e+01 1.62607410e+04
2.02263946e+04 1.97078668e+04]

Probability Distribution :
[0.00559658 0.0043805  0.00400834 0.0037776  0.00360957 0.00347731
0.00336825 0.00327549 0.00319482 0.00312348]
```

Code #3 : Graphical Representation.

 `import` `numpy as np``import` `matplotlib.pyplot as plt``  ` `distribution ``=` `np.linspace(``0``, np.minimum(rv.dist.b, ``3``))``print``(``"Distribution : \n"``, distribution)``  ` `plot ``=` `plt.plot(distribution, rv.pdf(distribution))`

Output:

```Distribution :
[0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
2.93877551 3.        ]
```

Code #4 : Varying Positional Arguments

 `import` `matplotlib.pyplot as plt``import` `numpy as np``  ` `x ``=` `np.linspace(``0``, ``5``, ``100``)``  ` `# Varying positional arguments``y1 ``=` `halfgennorm .pdf(x, ``1``, ``3``)``y2 ``=` `halfgennorm .pdf(x, ``1``, ``4``)``plt.plot(x, y1, ``"*"``, x, y2, ``"r--"``)`

Output:

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up