Skip to content
Related Articles

Related Articles

Improve Article

Range sum queries without updates

  • Difficulty Level : Medium
  • Last Updated : 04 Aug, 2021

Given an array arr of integers of size n. We need to compute the sum of elements from index i to index j. The queries consisting of i and j index values will be executed multiple times.

Examples: 

Input : arr[] = {1, 2, 3, 4, 5}
        i = 1, j = 3
        i = 2, j = 4
Output :  9
         12         

Input : arr[] = {1, 2, 3, 4, 5}
        i = 0, j = 4 
        i = 1, j = 2 
Output : 15
          5

A Simple Solution is to compute the sum for every query.

An Efficient Solution is to precompute prefix sum. Let pre[i] stores sum of elements from arr[0] to arr[i]. To answer a query (i, j), we return pre[j] – pre[i-1].

Below is the implementation of the above approach:



C++




// CPP program to find sum between two indexes
// when there is no update.
#include <bits/stdc++.h>
using namespace std;
 
void preCompute(int arr[], int n, int pre[])
{
    pre[0] = arr[0];
    for (int i = 1; i < n; i++)
        pre[i] = arr[i] + pre[i - 1];
}
 
// Returns sum of elements in arr[i..j]
// It is assumed that i <= j
int rangeSum(int i, int j, int pre[])
{
    if (i == 0)
        return pre[j];
 
    return pre[j] - pre[i - 1];
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    int pre[n];
   
    // Function call
    preCompute(arr, n, pre);
    cout << rangeSum(1, 3, pre) << endl;
    cout << rangeSum(2, 4, pre) << endl;
 
    return 0;
}

Java




// Java program to find sum between two indexes
// when there is no update.
 
import java.util.*;
import java.lang.*;
 
class GFG {
    public static void preCompute(int arr[], int n,
                                  int pre[])
    {
        pre[0] = arr[0];
        for (int i = 1; i < n; i++)
            pre[i] = arr[i] + pre[i - 1];
    }
 
    // Returns sum of elements in arr[i..j]
    // It is assumed that i <= j
    public static int rangeSum(int i, int j, int pre[])
    {
        if (i == 0)
            return pre[j];
 
        return pre[j] - pre[i - 1];
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 3, 4, 5 };
        int n = arr.length;
 
        int pre[] = new int[n];
 
        preCompute(arr, n, pre);
        System.out.println(rangeSum(1, 3, pre));
        System.out.println(rangeSum(2, 4, pre));
    }
}
 
// Code Contributed by Mohit Gupta_OMG <(0_o)>

Python3




# Python program to find sum between two indexes
# when there is no update.
 
# Function to compute prefix sum
def preCompute(arr, n, prefix):
  prefix[0] = arr[0]
  for i in range(1, n):
    prefix[i] = prefix[i - 1] + arr[i]
 
# Returns sum of elements in arr[i..j]
# It is assumed that i <= j
def rangeSum(l, r):
  if l == 0:
    print(prefix[r])
    return
   
  print(prefix[r] - prefix[l - 1])
     
# Driver code
arr = [1, 2, 3, 4, 5]
n = len(arr)
prefix = [0 for i in range(n)]
 
# preComputation
preCompute(arr, n, prefix)
 
# Range Queries
rangeSum(1, 3)
rangeSum(2, 4)
 
# This code is contributed by dineshdkda31.

C#




// Program to find sum between two
// indexes when there is no update.
using System;
 
class GFG {
    public static void preCompute(int[] arr, int n,
                                  int[] pre)
    {
        pre[0] = arr[0];
        for (int i = 1; i < n; i++)
            pre[i] = arr[i] + pre[i - 1];
    }
 
    // Returns sum of elements in
    // arr[i..j]
    // It is assumed that i <= j
    public static int rangeSum(int i, int j, int[] pre)
    {
        if (i == 0)
            return pre[j];
 
        return pre[j] - pre[i - 1];
    }
 
    // Driver code
    public static void Main()
    {
        int[] arr = { 1, 2, 3, 4, 5 };
        int n = arr.Length;
 
        int[] pre = new int[n];
 
        // Function call
        preCompute(arr, n, pre);
        Console.WriteLine(rangeSum(1, 3, pre));
        Console.WriteLine(rangeSum(2, 4, pre));
    }
}
 
// Code Contributed by Anant Agarwal.

Javascript




<script>
 
// JavaScript Program to find sum between two
// indexes when there is no update.
 
let pre = new Array(1000,0);
 
function preCompute(arr, n)
{
    pre[0] = arr[0];
    for (let i = 1; i < n; i++)
        pre[i] = arr[i] + pre[i - 1];
}
 
// Returns sum of elements in
// arr[i..j]
// It is assumed that i <= j
function rangeSum(i, j, pre)
{
    if (i == 0)
        return pre[j];
 
    return pre[j] - pre[i - 1];
}
 
// Driver code
let arr = [1, 2, 3, 4, 5];
let n = arr.length;
   
// Function call
preCompute(arr, n);
 
document.write(rangeSum(1, 3, pre)+"<br>");
document.write(rangeSum(2, 4, pre));
 
</script>
Output
9
12

Here time complexity of every range sum query is O(1) and the overall time complexity is O(n).

The question becomes complicated when updates are also allowed. In such situations when using advanced data structures like Segment Tree or Binary Indexed Tree.

This article is contributed by Rahul Chawla. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :