# Modified Range Sum in a given Array without updates

Given an array arr[] of size N containing distinct numbers from 1 to N in any order, the task is to perform modified range sum in this array according to the following rules.
For each index ‘i‘ in array arr:

• The starting index of the range ‘L‘ is selected as i + 1
• The ending index of the range ‘R‘ is selected as:
• min(arr[i], N-1); if arr[i] > i
• max(i+1, arr[i]); if arr[i] < i+1
• For updation, the values in range arr[L] to arr[R] is incremented by 1.
• The range is found out using the input array and not the updated array

Examples:

Input: arr[] = {4, 1, 3, 2}
Output: 4 2 5 4
Explanation:
For i = 0 -> Element in input array = 4. Therefore L = 1, and R = min(4, N-1) = 3. Hence, all the elements from arr to arr are incremented by 1. The elements after update operation are {4, 2, 4, 3}.
For i = 1 -> Element in input array = 1. Therefore L = 2, and R = max(1, i+1) = 2. Hence, all the elements from arr to arr are incremented by 1. The elements after update operation are {4, 2, 5, 3}.
For i = 2 -> Element in input array = 3. Therefore L = 3, and R = min(3, N-1) = 3. Hence, all the elements from arr to arr are incremented by 1. The elements after update operation are {4, 2, 5, 4}.
For i = 3 -> The array is unaffected. Therefore the elements after update operation are {4, 2, 5, 4}.
The resulting array is {4, 2, 5, 4}.

Input: arr[] = {2, 1}
Output: {2, 2}
Explanation:
The first element is 2. So arr gets incremented by 1. Hence, the resulting array is {2, 2}.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Naive Approach: The naive approach is to run a loop for each element and increase all the values from arr[i+1] to arr[min(i+arr[i], N-1)] by 1. The time complexity of this approach is O(N2).

Efficient Approach: This problem can be solved in O(N) by using an extra space of O(N). The idea is to use the concept of prefix sum array. The following steps are followed to compute the answer:

• An array b[] of size N + 1 is declared and all the elements are initialized with 0.
• For each element arr[i] in the given array, 1 is added to b[i+1] and subtracted from b[min(i + arr[i], N – 1)+ 1].
• Then, prefix sum of the array b[] is calculated.
• Finally, arr is updated as arr[i] = arr[i] + b[i].

Below is the implementation of the above approach:

## C++

 `// C++ program to find elements in an array ` `// after performing range updates. ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to perform the update on the given ` `// input array arr[]. ` `void` `update(vector<``int``>& arr, ` `            ``vector<``int``>& d, ``int` `n) ` `{ ` ` `  `    ``// A new array of size N+1 is defined ` `    ``// and 1's are added in that array ` `    ``for` `(``int` `i = 0; i < n - 1; i++) { ` `        ``d[i + 1] += 1; ` `        ``d[min(i + arr[i], n - 1) + 1] -= 1; ` `    ``} ` ` `  `    ``// Loop to perform the prefix sum ` `    ``// on the array d[]. ` `    ``for` `(``int` `i = 1; i < n; i++) { ` `        ``d[i] = d[i] + d[i - 1]; ` `    ``} ` `} ` ` `  `// Function to print the final ` `// array after updation ` `void` `print(vector<``int``>& arr, ` `           ``vector<``int``>& d, ``int` `n) ` `{ ` ` `  `    ``// Loop to add the values of d[i] ` `    ``// to arr[i] ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``cout << arr[i] + d[i] << ``" "``; ` `} ` ` `  `// Function to perform modified range sum ` `void` `modifiedRangeSum(vector<``int``>& arr, ``int` `n) ` `{ ` ` `  `    ``vector<``int``> d; ` ` `  `    ``// Loop to add N+1 0's in array d[] ` `    ``for` `(``int` `i = 0; i <= n; i++) ` `        ``d.push_back(0); ` ` `  `    ``update(arr, d, n); ` `    ``print(arr, d, n); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``vector<``int``> arr = { 5, 4, 1, 3, 2 }; ` `    ``int` `n = 5; ` ` `  `    ``modifiedRangeSum(arr, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find elements in an array ` `// after performing range updates. ` `import` `java.util.*; ` ` `  `class` `GFG{ ` ` `  `static` `ArrayList arr = ``new`  `        ``ArrayList(Arrays.asList(``5``, ``4``, ``1``, ``3``, ``2``)); ` `static` `int` `n = ``5``; ` ` `  `// Function to perform the update on the given ` `// input array arr[]. ` `static` `void` `update(ArrayList d) ` `{ ` ` `  `    ``// A new array of size N+1 is defined ` `    ``// and 1's are added in that array ` `    ``for` `(``int` `i = ``0``; i < n - ``1``; i++) { ` `        ``d.set(i + ``1``,d.get(i+``1``)+``1``); ` `        ``int` `x = Math.min(i + arr.get(i), n - ``1``)+ ``1``; ` `        ``d.set(x,d.get(x)-``1``); ` `    ``} ` ` `  `    ``// Loop to perform the prefix sum ` `    ``// on the array d[]. ` `    ``for` `(``int` `i = ``1``; i < n; i++) { ` `        ``d.set(i,d.get(i)+d.get(i - ``1``)); ` `    ``} ` `} ` ` `  `// Function to print the final ` `// array after updation ` `static` `void` `print(ArrayList d) ` `{ ` ` `  `    ``// Loop to add the values of d[i] ` `    ``// to arr[i] ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `        ``System.out.print(arr.get(i) + d.get(i)+ ``" "``); ` `} ` ` `  `// Function to perform modified range sum ` `static` `void` `modifiedRangeSum() ` `{ ` ` `  `    ``ArrayList d = ``new` `ArrayList(); ` ` `  `    ``// Loop to add N+1 0's in array d[] ` `    ``for` `(``int` `i = ``0``; i <= n; i++) ` `        ``d.add(``0``); ` ` `  `    ``update(d); ` `    ``print(d); ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``modifiedRangeSum(); ` `} ` `} ` ` `  `// This code is contributed by Surendra_Gangwar `

## Python3

 `# Python3 program to find elements in an array ` `# after performing range updates. ` `arr ``=` `[] ` `d ``=` `[]  ` ` `  `# Function to perform the update on the given ` `# input array arr[]. ` `def` `update( n): ` `     `  `    ``global` `d ` `    ``global` `arr ` ` `  `    ``# A new array of size N+1 is defined ` `    ``# and 1's are added in that array ` `    ``for` `i ``in` `range``(n ``-` `1``):  ` `        ``d[i ``+` `1``] ``+``=` `1` `        ``d[``min``(i ``+` `arr[i], n ``-` `1``) ``+` `1``] ``-``=` `1` `     `  `    ``# Loop to perform the prefix sum ` `    ``# on the array d[]. ` `    ``for` `i ``in` `range``(n): ` `        ``d[i ``+` `1``] ``=` `d[i ``+` `1``] ``+` `d[i ] ` `     `  `# Function to print the final ` `# array after updation ` `def` `print_( n): ` `     `  `    ``global` `d ` `    ``global` `arr ` ` `  `    ``# Loop to add the values of d[i] ` `    ``# to arr[i] ` `    ``for` `i ``in` `range``(n): ` `        ``x ``=` `(arr[i] ``+` `d[i] ) ` `        ``print``(x, end ``=` `" "``) ` ` `  `# Function to perform modified range sum ` `def` `modifiedRangeSum( n): ` ` `  `    ``global` `d ` `    ``global` `arr ` ` `  `    ``d ``=` `[] ` `     `  `    ``# Loop to add N+1 0's in array d[] ` `    ``for` `i ``in` `range``(n ``+` `1``): ` `        ``d.append(``0``) ` ` `  `    ``update( n) ` `    ``print_(n) ` ` `  `# Driver code ` `arr ``=` `[``5``, ``4``, ``1``, ``3``, ``2``]  ` `n ``=` `5` ` `  `modifiedRangeSum( n) ` ` `  `# This code is contributed by Arnab Kundu `

## C#

 `// C# program to find elements in an array ` `// after performing range updates. ` ` `  `using` `System;  ` `       `  `class` `GFG {  ` ` `  `// Function to perform the update on the given ` `// input array arr[]. ` `static` `void` `update(``int` `[]arr,``int` `[] d, ``int` `n){ ` `  `  `    ``// A new array of size N+1 is defined ` `    ``// and 1's are added in that array ` `    ``for` `(``int` `i = 0; i < n - 1; i++) { ` `        ``d[i + 1] += 1; ` `        ``d[Math.Min(i + arr[i], n - 1) + 1] -= 1; ` `    ``} ` `  `  `    ``// Loop to perform the prefix sum ` `    ``// on the array d[]. ` `    ``for` `(``int` `i = 1; i < n; i++) { ` `        ``d[i] = d[i] + d[i - 1]; ` `    ``} ` `} ` `  `  `// Function to print the final ` `// array after updation ` `static` `void` `print(``int` `[]arr,``int` `[]d, ``int` `n) ` `{ ` `  `  `    ``// Loop to add the values of d[i] ` `    ``// to arr[i] ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``Console.Write((arr[i] + d[i])+``" "``); ` `} ` `  `  `// Function to perform modified range sum ` `static` `void` `modifiedRangeSum(``int` `[]arr, ``int` `n) ` `{ ` `    ``int` `[]d= ``new` `int``[n+1]; ` `  `  `    ``// Loop to add N+1 0's in array d[] ` `    ``for` `(``int` `i = 0; i <= n; i++) ` `        ``d[i]=0; ` `  `  `    ``update(arr, d, n); ` `    ``print(arr, d, n); ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main()  ` `  ``{  ` `    ``int` `[] arr = { 5, 4, 1, 3, 2 }; ` `    ``int` `n = 5; ` `  `  `    ``modifiedRangeSum(arr, n); ` `  ``} ` `}   ` ` `  `// This code is contributed by mohit kumar 29 `

Output:

```5 5 3 6 5
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.