Given an array arr consisting of N elements and Q queries of the following two types:
- 1 K: For this type of query, the array needs to be rotated by K indices anticlockwise from its current state.
- 2 L R: For this query, the sum of the array elements present in the indices [L, R] needs to be calculated.
Example:
Input: arr = { 1, 2, 3, 4, 5, 6 }, query = { {2, 1, 3}, {1, 3}, {2, 0, 3}, {1, 4}, {2, 3, 5} }
Output:
9
16
12
Explanation:
For the 1st query {2, 1, 3} -> Sum of the elements in the indices [1, 3] = 2 + 3 + 4 = 9.
For the 2nd query {1, 3} -> Modified array after anti-clockwise rotation by 3 places is { 4, 5, 6, 1, 2, 3 }
For the 3rd query {2, 0, 3} -> Sum of the elements in the indices [0, 3] = 4 + 5 + 6 + 1 = 16.
For the 4th query {1, 4} -> Modified array after anti-clockwise rotation by 4 places is { 2, 3, 4, 5, 6, 1 }
For the 5th query {2, 3, 5} -> Sum of the elements in the indices [3, 5] = 5 + 6 + 1 = 12.
Approach:
- Create a prefix array which is double the size of the arr and copy the element at the ith index of arr to ith and N + ith index of prefix for all i in [0, N).
- Precompute the prefix sum for every index of that array and store in prefix.
- Set the pointer start at 0 to denote the starting index of the initial array.
- For query of type 1, shift start to
((start + K) % N)th position
- For query of type 2, calculate
prefix[start + R]
- prefix[start + L- 1 ]
- if start + L >= 1 or print the value of
prefix[start + R]
Below code is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void rotatedSumQuery(
int arr[], int n,
vector<vector< int > >& query,
int Q)
{
int prefix[2 * n];
for ( int i = 0; i < n; i++) {
prefix[i] = arr[i];
prefix[i + n] = arr[i];
}
for ( int i = 1; i < 2 * n; i++)
prefix[i] += prefix[i - 1];
int start = 0;
for ( int q = 0; q < Q; q++) {
if (query[q][0] == 1) {
int k = query[q][1];
start = (start + k) % n;
}
else if (query[q][0] == 2) {
int L, R;
L = query[q][1];
R = query[q][2];
if (start + L == 0)
cout << prefix[start + R] << endl;
else
cout << prefix[start + R]
- prefix[start + L - 1]
<< endl;
}
}
}
int main()
{
int arr[] = { 1, 2, 3, 4, 5, 6 };
int Q = 5;
vector<vector< int > > query
= { { 2, 1, 3 },
{ 1, 3 },
{ 2, 0, 3 },
{ 1, 4 },
{ 2, 3, 5 } };
int n = sizeof (arr) / sizeof (arr[0]);
rotatedSumQuery(arr, n, query, Q);
return 0;
}
|
Java
class GFG{
static void rotatedSumQuery( int arr[], int n,
int [][]query, int Q)
{
int []prefix = new int [ 2 * n];
for ( int i = 0 ; i < n; i++)
{
prefix[i] = arr[i];
prefix[i + n] = arr[i];
}
for ( int i = 1 ; i < 2 * n; i++)
prefix[i] += prefix[i - 1 ];
int start = 0 ;
for ( int q = 0 ; q < Q; q++)
{
if (query[q][ 0 ] == 1 )
{
int k = query[q][ 1 ];
start = (start + k) % n;
}
else if (query[q][ 0 ] == 2 )
{
int L, R;
L = query[q][ 1 ];
R = query[q][ 2 ];
if (start + L == 0 )
System.out.print(prefix[start + R] + "\n" );
else
System.out.print(prefix[start + R] -
prefix[start + L - 1 ] +
"\n" );
}
}
}
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 };
int Q = 5 ;
int [][]query = { { 2 , 1 , 3 },
{ 1 , 3 },
{ 2 , 0 , 3 },
{ 1 , 4 },
{ 2 , 3 , 5 } };
int n = arr.length;
rotatedSumQuery(arr, n, query, Q);
}
}
|
Python3
def rotatedSumQuery(arr, n, query, Q):
prefix = [ 0 ] * ( 2 * n)
for i in range (n):
prefix[i] = arr[i]
prefix[i + n] = arr[i]
for i in range ( 1 , 2 * n):
prefix[i] + = prefix[i - 1 ];
start = 0 ;
for q in range (Q):
if (query[q][ 0 ] = = 1 ):
k = query[q][ 1 ]
start = (start + k) % n;
elif (query[q][ 0 ] = = 2 ):
L = query[q][ 1 ]
R = query[q][ 2 ]
if (start + L = = 0 ):
print (prefix[start + R])
else :
print (prefix[start + R] -
prefix[start + L - 1 ])
arr = [ 1 , 2 , 3 , 4 , 5 , 6 ];
Q = 5
query = [ [ 2 , 1 , 3 ],
[ 1 , 3 ],
[ 2 , 0 , 3 ],
[ 1 , 4 ],
[ 2 , 3 , 5 ] ]
n = len (arr);
rotatedSumQuery(arr, n, query, Q);
|
C#
using System;
class GFG{
static void rotatedSumQuery( int [] arr, int n,
int [,] query, int Q)
{
int [] prefix = new int [2 * n];
for ( int i = 0; i < n; i++)
{
prefix[i] = arr[i];
prefix[i + n] = arr[i];
}
for ( int i = 1; i < 2 * n; i++)
prefix[i] += prefix[i - 1];
int start = 0;
for ( int q = 0; q < Q; q++)
{
if (query[q, 0] == 1)
{
int k = query[q, 1];
start = (start + k) % n;
}
else if (query[q, 0] == 2)
{
int L, R;
L = query[q, 1];
R = query[q, 2];
if (start + L == 0)
Console.Write(prefix[start + R] + "\n" );
else
Console.Write(prefix[start + R] -
prefix[start + L - 1] +
"\n" );
}
}
}
public static void Main()
{
int [] arr = new int [] { 1, 2, 3, 4, 5, 6 };
int Q = 5;
int [,] query = new int [,] { { 2, 1, 3 },
{ 1, 3, 0 },
{ 2, 0, 3 },
{ 1, 4, 0 },
{ 2, 3, 5 } };
int n = arr.Length;
rotatedSumQuery(arr, n, query, Q);
}
}
|
Javascript
<script>
function rotatedSumQuery(arr, n,
query, Q)
{
let prefix = [];
for (let i = 0; i < n; i++)
{
prefix[i] = arr[i];
prefix[i + n] = arr[i];
}
for (let i = 1; i < 2 * n; i++)
prefix[i] += prefix[i - 1];
let start = 0;
for (let q = 0; q < Q; q++)
{
if (query[q][0] == 1)
{
let k = query[q][1];
start = (start + k) % n;
}
else if (query[q][0] == 2)
{
let L, R;
L = query[q][1];
R = query[q][2];
if (start + L == 0)
document.write(prefix[start + R] + "<br/>" );
else
document.write(prefix[start + R] -
prefix[start + L - 1] +
"<br/>" );
}
}
}
let arr = [ 1, 2, 3, 4, 5, 6 ];
let Q = 5;
let query = [[ 2, 1, 3 ],
[ 1, 3 ],
[ 2, 0, 3 ],
[ 1, 4 ],
[ 2, 3, 5 ]];
let n = arr.length;
rotatedSumQuery(arr, n, query, Q);
</script>
|
Time Complexity: O(N+Q), where Q is the number of queries, and as each query will cost O (1) time for Q queries time complexity would be O(N+Q).
Auxiliary Space: O(N), as we are using extra space for prefix.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
25 Apr, 2023
Like Article
Save Article