Rabin-Karp Algorithm for Pattern Searching
Given a text txt[0. . .n-1] and a pattern pat[0. . .m-1], write a function search(char pat[], char txt[]) that prints all occurrences of pat[] in txt[]. You may assume that n > m.
Examples:
Input: txt[] = “THIS IS A TEST TEXT”, pat[] = “TEST”
Output: Pattern found at index 10Input: txt[] = “AABAACAADAABAABA”, pat[] = “AABA”
Output: Pattern found at index 0
Pattern found at index 9
Pattern found at index 12

Rabin-Karp algorithm
Approach: To solve the problem follow the below idea:
The Naive String Matching algorithm slides the pattern one by one. After each slide, one by one checks characters at the current shift, and if all characters match then print the match
Like the Naive Algorithm, the Rabin-Karp algorithm also slides the pattern one by one. But unlike the Naive algorithm, the Rabin Karp algorithm matches the hash value of the pattern with the hash value of the current substring of text, and if the hash values match then only it starts matching individual characters. So Rabin Karp algorithm needs to calculate hash values for the following strings.
- Pattern itself
- All the substrings of the text of length m
Since we need to efficiently calculate hash values for all the substrings of size m of text, we must have a hash function that has the following property:
- Hash at the next shift must be efficiently computable from the current hash value and next character in text or we can say hash(txt[s+1 .. s+m]) must be efficiently computable from hash(txt[s .. s+m-1]) and txt[s+m] i.e., hash(txt[s+1 .. s+m]) = rehash(txt[s+m], hash(txt[s .. s+m-1])) and
- Rehash must be O(1) operation.
Note: The hash function suggested by Rabin and Karp calculates an integer value. The integer value for a string is the numeric value of a string.
For example, If all possible characters are from 1 to 10, the numeric value of “122” will be 122.
The number of possible characters is higher than 10 (256 in general) and the pattern length can be large. So the numeric values cannot be practically stored as an integer. Therefore, the numeric value is calculated using modular arithmetic to make sure that the hash values can be stored in an integer variable (can fit in memory words). To do rehashing, we need to take off the most significant digit and add the new least significant digit for in hash value. Rehashing is done using the following formula:
hash( txt[s+1 .. s+m] ) = ( d ( hash( txt[s .. s+m-1]) – txt[s]*h ) + txt[s + m] ) mod q
hash( txt[s .. s+m-1] ) : Hash value at shift s
hash( txt[s+1 .. s+m] ) : Hash value at next shift (or shift s+1)
d: Number of characters in the alphabet
q: A prime number
h: d(m-1)
How does the above expression work?
This is simple mathematics, we compute the decimal value of the current window from the previous window.
Example: pattern length is 3 and string is “23456”
You compute the value of the first window (which is “234”) as 234.
How will you compute the value of the next window “345”? You will do (234 – 2*100)*10 + 5 and get 345.
Follow the steps mentioned here to implement the idea:
- Initially calculate the hash value of the pattern.
- Start iterating from the starting of the string:
- Calculate the hash value of the current substring having length m.
- If the hash value of the current substring and the pattern are same check if the substring is same as the pattern.
- If they are same, store the starting index as a valid answer. Otherwise, continue for the next substrings.
- Return the starting indices as the required answer.
Below is the implementation of the above approach:
C++
/* Following program is a C++ implementation of Rabin Karp Algorithm given in the CLRS book */ #include <bits/stdc++.h> using namespace std; // d is the number of characters in the input alphabet #define d 256 /* pat -> pattern txt -> text q -> A prime number */ void search( char pat[], char txt[], int q) { int M = strlen (pat); int N = strlen (txt); int i, j; int p = 0; // hash value for pattern int t = 0; // hash value for txt int h = 1; // The value of h would be "pow(d, M-1)%q" for (i = 0; i < M - 1; i++) h = (h * d) % q; // Calculate the hash value of pattern and first // window of text for (i = 0; i < M; i++) { p = (d * p + pat[i]) % q; t = (d * t + txt[i]) % q; } // Slide the pattern over text one by one for (i = 0; i <= N - M; i++) { // Check the hash values of current window of text // and pattern. If the hash values match then only // check for characters one by one if (p == t) { /* Check for characters one by one */ for (j = 0; j < M; j++) { if (txt[i + j] != pat[j]) { break ; } } // if p == t and pat[0...M-1] = txt[i, i+1, // ...i+M-1] if (j == M) cout << "Pattern found at index " << i << endl; } // Calculate hash value for next window of text: // Remove leading digit, add trailing digit if (i < N - M) { t = (d * (t - txt[i] * h) + txt[i + M]) % q; // We might get negative value of t, converting // it to positive if (t < 0) t = (t + q); } } } /* Driver code */ int main() { char txt[] = "GEEKS FOR GEEKS" ; char pat[] = "GEEK" ; // we mod to avoid overflowing of value but we should // take as big q as possible to avoid the collison int q = INT_MAX; // Function Call search(pat, txt, q); return 0; } // This is code is contributed by rathbhupendra |
C
/* Following program is a C implementation of Rabin Karp Algorithm given in the CLRS book */ #include <stdio.h> #include <string.h> // d is the number of characters in the input alphabet #define d 256 /* pat -> pattern txt -> text q -> A prime number */ void search( char pat[], char txt[], int q) { int M = strlen (pat); int N = strlen (txt); int i, j; int p = 0; // hash value for pattern int t = 0; // hash value for txt int h = 1; // The value of h would be "pow(d, M-1)%q" for (i = 0; i < M - 1; i++) h = (h * d) % q; // Calculate the hash value of pattern and first // window of text for (i = 0; i < M; i++) { p = (d * p + pat[i]) % q; t = (d * t + txt[i]) % q; } // Slide the pattern over text one by one for (i = 0; i <= N - M; i++) { // Check the hash values of current window of text // and pattern. If the hash values match then only // check for characters one by one if (p == t) { /* Check for characters one by one */ for (j = 0; j < M; j++) { if (txt[i + j] != pat[j]) break ; } // if p == t and pat[0...M-1] = txt[i, i+1, // ...i+M-1] if (j == M) printf ( "Pattern found at index %d \n" , i); } // Calculate hash value for next window of text: // Remove leading digit, add trailing digit if (i < N - M) { t = (d * (t - txt[i] * h) + txt[i + M]) % q; // We might get negative value of t, converting // it to positive if (t < 0) t = (t + q); } } } /* Driver Code */ int main() { char txt[] = "GEEKS FOR GEEKS" ; char pat[] = "GEEK" ; // A prime number int q = 101; // function call search(pat, txt, q); return 0; } |
Java
// Following program is a Java implementation // of Rabin Karp Algorithm given in the CLRS book public class Main { // d is the number of characters in the input alphabet public final static int d = 256 ; /* pat -> pattern txt -> text q -> A prime number */ static void search(String pat, String txt, int q) { int M = pat.length(); int N = txt.length(); int i, j; int p = 0 ; // hash value for pattern int t = 0 ; // hash value for txt int h = 1 ; // The value of h would be "pow(d, M-1)%q" for (i = 0 ; i < M - 1 ; i++) h = (h * d) % q; // Calculate the hash value of pattern and first // window of text for (i = 0 ; i < M; i++) { p = (d * p + pat.charAt(i)) % q; t = (d * t + txt.charAt(i)) % q; } // Slide the pattern over text one by one for (i = 0 ; i <= N - M; i++) { // Check the hash values of current window of // text and pattern. If the hash values match // then only check for characters one by one if (p == t) { /* Check for characters one by one */ for (j = 0 ; j < M; j++) { if (txt.charAt(i + j) != pat.charAt(j)) break ; } // if p == t and pat[0...M-1] = txt[i, i+1, // ...i+M-1] if (j == M) System.out.println( "Pattern found at index " + i); } // Calculate hash value for next window of text: // Remove leading digit, add trailing digit if (i < N - M) { t = (d * (t - txt.charAt(i) * h) + txt.charAt(i + M)) % q; // We might get negative value of t, // converting it to positive if (t < 0 ) t = (t + q); } } } /* Driver Code */ public static void main(String[] args) { String txt = "GEEKS FOR GEEKS" ; String pat = "GEEK" ; // A prime number int q = 101 ; // Function Call search(pat, txt, q); } } // This code is contributed by nuclode |
Python3
# Following program is the python implementation of # Rabin Karp Algorithm given in CLRS book # d is the number of characters in the input alphabet d = 256 # pat -> pattern # txt -> text # q -> A prime number def search(pat, txt, q): M = len (pat) N = len (txt) i = 0 j = 0 p = 0 # hash value for pattern t = 0 # hash value for txt h = 1 # The value of h would be "pow(d, M-1)%q" for i in range (M - 1 ): h = (h * d) % q # Calculate the hash value of pattern and first window # of text for i in range (M): p = (d * p + ord (pat[i])) % q t = (d * t + ord (txt[i])) % q # Slide the pattern over text one by one for i in range (N - M + 1 ): # Check the hash values of current window of text and # pattern if the hash values match then only check # for characters one by one if p = = t: # Check for characters one by one for j in range (M): if txt[i + j] ! = pat[j]: break else : j + = 1 # if p == t and pat[0...M-1] = txt[i, i+1, ...i+M-1] if j = = M: print ( "Pattern found at index " + str (i)) # Calculate hash value for next window of text: Remove # leading digit, add trailing digit if i < N - M: t = (d * (t - ord (txt[i]) * h) + ord (txt[i + M])) % q # We might get negative values of t, converting it to # positive if t < 0 : t = t + q # Driver Code if __name__ = = '__main__' : txt = "GEEKS FOR GEEKS" pat = "GEEK" # A prime number q = 101 # Function Call search(pat, txt, q) # This code is contributed by Bhavya Jain |
C#
// Following program is a C# implementation // of Rabin Karp Algorithm given in the CLRS book using System; public class GFG { // d is the number of characters in the input alphabet public readonly static int d = 256; /* pat -> pattern txt -> text q -> A prime number */ static void search(String pat, String txt, int q) { int M = pat.Length; int N = txt.Length; int i, j; int p = 0; // hash value for pattern int t = 0; // hash value for txt int h = 1; // The value of h would be "pow(d, M-1)%q" for (i = 0; i < M - 1; i++) h = (h * d) % q; // Calculate the hash value of pattern and first // window of text for (i = 0; i < M; i++) { p = (d * p + pat[i]) % q; t = (d * t + txt[i]) % q; } // Slide the pattern over text one by one for (i = 0; i <= N - M; i++) { // Check the hash values of current window of // text and pattern. If the hash values match // then only check for characters one by one if (p == t) { /* Check for characters one by one */ for (j = 0; j < M; j++) { if (txt[i + j] != pat[j]) break ; } // if p == t and pat[0...M-1] = txt[i, i+1, // ...i+M-1] if (j == M) Console.WriteLine( "Pattern found at index " + i); } // Calculate hash value for next window of text: // Remove leading digit, add trailing digit if (i < N - M) { t = (d * (t - txt[i] * h) + txt[i + M]) % q; // We might get negative value of t, // converting it to positive if (t < 0) t = (t + q); } } } /* Driver Code */ public static void Main() { String txt = "GEEKS FOR GEEKS" ; String pat = "GEEK" ; // A prime number int q = 101; // Function Call search(pat, txt, q); } } // This code is contributed by PrinciRaj19992 |
Javascript
<script> // Following program is a Javascript implementation // of Rabin Karp Algorithm given in the CLRS book // d is the number of characters in // the input alphabet let d = 256; /* pat -> pattern txt -> text q -> A prime number */ function search(pat, txt, q) { let M = pat.length; let N = txt.length; let i, j; // Hash value for pattern let p = 0; // Hash value for txt let t = 0; let h = 1; // The value of h would be "pow(d, M-1)%q" for (i = 0; i < M - 1; i++) h = (h * d) % q; // Calculate the hash value of pattern and // first window of text for (i = 0; i < M; i++) { p = (d * p + pat[i].charCodeAt()) % q; t = (d * t + txt[i].charCodeAt()) % q; } // Slide the pattern over text one by one for (i = 0; i <= N - M; i++) { // Check the hash values of current // window of text and pattern. If the // hash values match then only // check for characters one by one if (p == t) { /* Check for characters one by one */ for (j = 0; j < M; j++) { if (txt[i+j] != pat[j]) break ; } // if p == t and pat[0...M-1] = // txt[i, i+1, ...i+M-1] if (j == M) document.write( "Pattern found at index " + i + "<br/>" ); } // Calculate hash value for next window // of text: Remove leading digit, add // trailing digit if (i < N - M) { t = (d * (t - txt[i].charCodeAt() * h) + txt[i + M].charCodeAt()) % q; // We might get negative value of t, // converting it to positive if (t < 0) t = (t + q); } } } // Driver code let txt = "GEEKS FOR GEEKS" ; let pat = "GEEK" ; // A prime number let q = 101; // Function Call search(pat, txt, q); // This code is contributed by target_2 </script> |
Pattern found at index 0 Pattern found at index 10
Time Complexity:
- The average and best-case running time of the Rabin-Karp algorithm is O(n+m), but its worst-case time is O(nm).
- The worst case of the Rabin-Karp algorithm occurs when all characters of pattern and text are the same as the hash values of all the substrings of txt[] match with the hash value of pat[].
Auxiliary Space: O(1)
Related Posts:
Searching for Patterns | Set 1 (Naive Pattern Searching)
Searching for Patterns | Set 2 (KMP Algorithm)
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
Please Login to comment...