PyTorch is an open-source machine learning library developed by Facebook. It is used for deep neural network and natural language processing purposes.
The function torch.acos()
provides support for the inverse cosine function in PyTorch. It expects the input to be in the range [-1, 1] and gives the output in radian form. It returns nan if the input does not lie in the range [-1, 1]. The input type is tensor and if the input contains more than one element, element-wise inverse cosine is computed.
Syntax: torch.acos(x, out=None)
Parameters:
x: Input tensor
name (optional): Output tensor
Return type: A tensor with the same type as that of x.
Code #1:
Python3
import torch
a = torch.FloatTensor([ 1.0 , - 0.5 , 3.4 , 0.2 , 0.0 , - 2 ])
print (a)
b = torch.acos(a)
print (b)
|
Output:
tensor([ 1.0000, -0.5000, 3.4000, 0.2000, 0.0000, -2.0000])
tensor([0.0000, 2.0944, nan, 1.3694, 1.5708, nan])
Code #2: Visualization
Python3
import torch
import numpy as np
import matplotlib.pyplot as plt
a = np.linspace( - 1 , 1 , 15 )
b = torch.acos(torch.FloatTensor(a))
print (b)
plt.plot(a, b.numpy(), color = 'red' , marker = "o" )
plt.title( "torch.acos" )
plt.xlabel( "X" )
plt.ylabel( "Y" )
plt.show()
|
Output:
tensor([3.1416, 2.6005, 2.3664, 2.1790, 2.0137, 1.8605, 1.7141, 1.5708, 1.4274,
1.2810, 1.1279, 0.9626, 0.7752, 0.5411, 0.0000])
