Python Program for Iterative Quick Sort

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program for implementation of Quicksort 
  
# This function is same in both iterative and recursive
def partition(arr,l,h):
    i = ( l - 1 )
    x = arr[h]
  
    for j in range(l , h):
        if   arr[j] <= x:
  
            # increment index of smaller element
            i = i+1
            arr[i],arr[j] = arr[j],arr[i]
  
    arr[i+1],arr[h] = arr[h],arr[i+1]
    return (i+1)
  
# Function to do Quick sort
# arr[] --> Array to be sorted,
# l  --> Starting index,
# h  --> Ending index
def quickSortIterative(arr,l,h):
  
    # Create an auxiliary stack
    size = h - l + 1
    stack = [0] * (size)
  
    # initialize top of stack
    top = -1
  
    # push initial values of l and h to stack
    top = top + 1
    stack[top] = l
    top = top + 1
    stack[top] = h
  
    # Keep popping from stack while is not empty
    while top >= 0:
  
        # Pop h and l
        h = stack[top]
        top = top - 1
        l = stack[top]
        top = top - 1
  
        # Set pivot element at its correct position in
        # sorted array
        p = partition( arr, l, h )
  
        # If there are elements on left side of pivot,
        # then push left side to stack
        if p-1 > l:
            top = top + 1
            stack[top] = l
            top = top + 1
            stack[top] = p - 1
  
        # If there are elements on right side of pivot,
        # then push right side to stack
        if p+1 < h:
            top = top + 1
            stack[top] = p + 1
            top = top + 1
            stack[top] = h
  
# Driver code to test above
arr = [4, 3, 5, 2, 1, 3, 2, 3]
n = len(arr)
quickSortIterative(arr, 0, n-1)
print ("Sorted array is:")
for i in range(n):
    print ("%d" %arr[i]),
  
# This code is contributed by Mohit Kumra

chevron_right


Output:

Sorted array is:
1 2 2 3 3 3 4 5

The above mentioned optimizations for recursive quick sort can also be applied to iterative version.

1) Partition process is same in both recursive and iterative. The same techniques to choose optimal pivot can also be applied to iterative version.



2) To reduce the stack size, first push the indexes of smaller half.

3) Use insertion sort when the size reduces below a experimentally calculated threshold.
Please refer complete article on Iterative Quick Sort for more details!



My Personal Notes arrow_drop_up


Article Tags :

Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.