Related Articles

Related Articles

Python – Poisson Discrete Distribution in Statistics
  • Last Updated : 10 Jan, 2020

scipy.stats.poisson() is a poisson discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution.

Parameters :

x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : poisson discrete random variable

Code #1 : Creating poisson discrete random variable



filter_none

edit
close

play_arrow

link
brightness_4
code

# importing library
  
from scipy.stats import poisson 
    
numargs = poisson .numargs 
a, b = 0.2, 0.8
rv = poisson (a, b) 
    
print ("RV : \n", rv)  

chevron_right


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4D865848

Code #2 : poisson discrete variates and probability distribution

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = poisson .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(poisson.ppf(0.01, a, b),
                poisson.ppf(0.99, a, b), 10)
R = poisson.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 

chevron_right


Output :

Random Variates : 
 [0 0 1 0 1 0 0 1 0 0]

Probability Distribution : 
 [ 5. nan nan nan nan nan nan nan nan nan]

Code #3 : Graphical Representation.

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.ppf(distribution)) 

chevron_right


Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  

Code #4 : Varying Positional Arguments

filter_none

edit
close

play_arrow

link
brightness_4
code

import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = poisson.ppf(x, a, b) 
y2 = poisson.pmf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"

chevron_right


Output :

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :