Skip to content
Related Articles

Related Articles

Improve Article
Python PIL | BoxBlur() method
  • Last Updated : 29 Jun, 2019
PIL is the Python Imaging Library which provides the python interpreter with image editing capabilities. The ImageFilter module contains definitions for a pre-defined set of filters, which can be used with the Image.filter() method.

PIL.ImageFilter.BoxBlur() Blurs the image by setting each pixel to the average value of the pixels in a square box extending radius pixels in each direction. Supports float radius of arbitrary size. Uses an optimized implementation which runs in linear time relative to the size of the image for any radius value.

Synatx: PIL.ImageFilter.BoxBlur()

Partameters: 
radius: Size of the box in one direction. Radius 0 does not blur, returns an identical image. Radius 1 takes 1 pixel in each direction, i.e. 9 pixels in total.

Image used:




# Importing Image and ImageFilter module from PIL package  
from PIL import Image, ImageFilter 
      
# creating a image object 
im1 = Image.open(r"C:\Users\sadow984\Desktop\download2.JPG"
      
# applying the boxblur method 
im2 = im1.filter(ImageFilter.BoxBlur(0)) 
      
im2.show() 

Output:




# Importing Image and ImageFilter module from PIL package  
from PIL import Image, ImageFilter 
      
# creating a image object 
im1 = Image.open(r"C:\Users\sadow984\Desktop\download2.JPG"
      
# applying the boxblur method 
im2 = im1.filter(ImageFilter.BoxBlur(2)) 
      
im2.show() 

Output:




# Importing Image and ImageFilter module from PIL package  
from PIL import Image, ImageFilter 
      
# creating a image object 
im1 = Image.open(r"C:\Users\sadow984\Desktop\download2.JPG"
      
# applying the boxblur method 
im2 = im1.filter(ImageFilter.BoxBlur(8)) 
      
im2.show() 

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :