Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas dataframe.max()
function returns the maximum of the values in the given object. If the input is a series, the method will return a scalar which will be the maximum of the values in the series. If the input is a dataframe, then the method will return a series with maximum of values over the specified axis in the dataframe. By default the axis is the index axis.
Syntax: DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Parameters :
axis : {index (0), columns (1)}
skipna : Exclude NA/null values when computing the result
level : If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only : Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Returns : max : Series or DataFrame (if level specified)
Example #1: Use max()
function to find the maximum value over the index axis.
import pandas as pd
df = pd.DataFrame({ "A" :[ 12 , 4 , 5 , 44 , 1 ],
"B" :[ 5 , 2 , 54 , 3 , 2 ],
"C" :[ 20 , 16 , 7 , 3 , 8 ],
"D" :[ 14 , 3 , 17 , 2 , 6 ]})
df
|

Let’s use the dataframe.max()
function to find the maximum value over the index axis
Output :

Example #2: Use max()
function on a dataframe which has Na
values. Also find the maximum over the column axis.
import pandas as pd
df = pd.DataFrame({ "A" :[ 12 , 4 , 5 , None , 1 ],
"B" :[ 7 , 2 , 54 , 3 , None ],
"C" :[ 20 , 16 , 11 , 3 , 8 ],
"D" :[ 14 , 3 , None , 2 , 6 ]})
df. max (axis = 1 , skipna = True )
|
Output :

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
19 Nov, 2018
Like Article
Save Article