# Python math.gamma() Method

Python in its language allows various mathematical operations, which has manifolds application in scientific domain. One such offering of Python is the inbuilt `gamma()` function, which numerically computes the gamma value of the number that is passed in the function.
Syntax : math.gamma(x) Parameters : x : The number whose gamma value needs to be computed. Returns : The gamma value, which is numerically equal to “factorial(x-1)”.
Code #1 : Demonstrating the working of gamma()
 `# Python code to demonstrate ``# working of gamma() ``import` `math `` ` `# initializing argument ``gamma_var ``=` `6`` ` `# Printing the gamma value. ``print` `(``"The gamma value of the given argument is : "``                       ``+` `str``(math.gamma(gamma_var))) `

Output:
`The gamma value of the given argument is : 120.0`

factorial() vs gamma()
The gamma value can also be found using `factorial(x-1)`, but the use case of `gamma()` is because, if we compare both the function to achieve the similar task, `gamma()` offers better performance. Code #2 : Comparing `factorial()` and `gamma()`
 `# Python code to demonstrate ``# factorial() vs gamma() ``import` `math ``import` `time  `` ` `# initializing argument ``gamma_var ``=` `6`` ` `# checking performance  ``# gamma() vs factorial() ``start_fact ``=` `time.time() ``res_fact ``=` `math.factorial(gamma_var``-``1``) `` ` `print` `(``"The gamma value using factorial is : "` `                              ``+` `str``(res_fact)) `` ` `print` `(``"The time taken to compute is : "``        ``+` `str``(time.time() ``-` `start_fact)) `` ` `print` `(``'\n'``) `` ` `start_gamma ``=` `time.time() ``res_gamma ``=` `math.gamma(gamma_var) `` ` `print` `(``"The gamma value using gamma() is : "``                           ``+` `str``(res_gamma)) `` ` `print` `(``"The time taken to compute is : "` `       ``+` `str``(time.time() ``-` `start_gamma)) `

Output:
```The gamma value using factorial is : 120
The time taken to compute is : 9.059906005859375e-06

The gamma value using gamma() is : 120.0
The time taken to compute is : 5.245208740234375e-06
```

Previous
Next