Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Python – Bernoulli Distribution in Statistics

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

scipy.stats.bernoulli() is a Bernoulli discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution.

Parameters :

x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Bernoulli discrete random variable

Code #1 : Creating Bernoulli discrete random variable




# importing library
  
from scipy.stats import bernoulli 
    
numargs = bernoulli .numargs 
a, b = 0.2, 0.8
rv = bernoulli (a, b) 
    
print ("RV : \n", rv)  

Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4C0FC108

Code #2 : Bernoulli discrete variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = bernoulli .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(bernoulli.ppf(0.01, a, b),
                bernoulli.ppf(0.99, a, b), 10)
R = bernoulli.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 

Output :

Random Variates : 
 [0 0 0 0 0 0 0 0 0 1]

Probability Distribution : 
 [ 4.  4. nan nan nan nan nan nan nan nan]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.ppf(distribution)) 

Output :

Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]
  

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = bernoulli.ppf(x, a, b) 
y2 = bernoulli.pmf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"

Output :


My Personal Notes arrow_drop_up
Last Updated : 31 Dec, 2019
Like Article
Save Article
Similar Reads
Related Tutorials