Push Relabel Algorithm | Set 2 (Implementation)
We strongly recommend to refer below article before moving on to this article.
Push Relabel Algorithm | Set 1 (Introduction and Illustration)
Problem Statement:
Given a graph that represents a flow network where every edge has a capacity. Also given two vertices source ‘s’ and sink ‘t’ in the graph, find the maximum possible flow from s to t with following constraints:
- Flow on an edge doesn’t exceed the given capacity of the edge.
- Incoming flow is equal to outgoing flow for every vertex except s and t.
For example, consider the following graph from CLRS book.
The maximum possible flow in the above graph is 23.
Push-Relabel Algorithm 1) Initialize PreFlow : Initialize Flows and Heights 2) While it is possible to perform a Push() or Relabel() on a vertex // Or while there is a vertex that has excess flow Do Push() or Relabel() // At this point all vertices have Excess Flow as 0 (Except source // and sink) 3) Return flow.
Below are main operations performed in Push Relabel algorithm.
There are three main operations in Push-Relabel Algorithm
1. Initialize PreFlow() It initializes heights and flows of all vertices.
Preflow() 1) Initialize height and flow of every vertex as 0. 2) Initialize height of source vertex equal to total number of vertices in graph. 3) Initialize flow of every edge as 0. 4) For all vertices adjacent to source s, flow and excess flow is equal to capacity initially.
2. Push() is used to make the flow from a node that has excess flow. If a vertex has excess flow and there is an adjacent with a smaller height (in the residual graph), we push the flow from the vertex to the adjacent with a lower height. The amount of pushed flow through the pipe (edge) is equal to the minimum of excess flow and capacity of the edge.
3. Relabel() operation is used when a vertex has excess flow and none of its adjacents is at the lower height. We basically increase the height of the vertex so that we can perform push(). To increase height, we pick the minimum height adjacent (in residual graph, i.e., an adjacent to whom we can add flow) and add 1 to it.
Implementation:
The following implementation uses the below structure for representing a flow network.
struct Vertex { int h; // Height of node int e_flow; // Excess Flow }
struct Edge { int u, v; // Edge is from u to v int flow; // Current flow int capacity; }
class Graph { Edge edge[]; // Array of edges Vertex ver[]; // Array of vertices }
The below code uses the given graph itself as a flow network and residual graph. We have not created a separate graph for the residual graph and have used the same graph for simplicity.
Implementation:
C++
// C++ program to implement push-relabel algorithm for // getting maximum flow of graph #include <bits/stdc++.h> using namespace std; struct Edge { // To store current flow and capacity of edge int flow, capacity; // An edge u--->v has start vertex as u and end // vertex as v. int u, v; Edge( int flow, int capacity, int u, int v) { this ->flow = flow; this ->capacity = capacity; this ->u = u; this ->v = v; } }; // Represent a Vertex struct Vertex { int h, e_flow; Vertex( int h, int e_flow) { this ->h = h; this ->e_flow = e_flow; } }; // To represent a flow network class Graph { int V; // No. of vertices vector<Vertex> ver; vector<Edge> edge; // Function to push excess flow from u bool push( int u); // Function to relabel a vertex u void relabel( int u); // This function is called to initialize // preflow void preflow( int s); // Function to reverse edge void updateReverseEdgeFlow( int i, int flow); public : Graph( int V); // Constructor // function to add an edge to graph void addEdge( int u, int v, int w); // returns maximum flow from s to t int getMaxFlow( int s, int t); }; Graph::Graph( int V) { this ->V = V; // all vertices are initialized with 0 height // and 0 excess flow for ( int i = 0; i < V; i++) ver.push_back(Vertex(0, 0)); } void Graph::addEdge( int u, int v, int capacity) { // flow is initialized with 0 for all edge edge.push_back(Edge(0, capacity, u, v)); } void Graph::preflow( int s) { // Making h of source Vertex equal to no. of vertices // Height of other vertices is 0. ver[s].h = ver.size(); // for ( int i = 0; i < edge.size(); i++) { // If current edge goes from source if (edge[i].u == s) { // Flow is equal to capacity edge[i].flow = edge[i].capacity; // Initialize excess flow for adjacent v ver[edge[i].v].e_flow += edge[i].flow; // Add an edge from v to s in residual graph with // capacity equal to 0 edge.push_back(Edge(-edge[i].flow, 0, edge[i].v, s)); } } } // returns index of overflowing Vertex int overFlowVertex(vector<Vertex>& ver) { for ( int i = 1; i < ver.size() - 1; i++) if (ver[i].e_flow > 0) return i; // -1 if no overflowing Vertex return -1; } // Update reverse flow for flow added on ith Edge void Graph::updateReverseEdgeFlow( int i, int flow) { int u = edge[i].v, v = edge[i].u; for ( int j = 0; j < edge.size(); j++) { if (edge[j].v == v && edge[j].u == u) { edge[j].flow -= flow; return ; } } // adding reverse Edge in residual graph Edge e = Edge(0, flow, u, v); edge.push_back(e); } // To push flow from overflowing vertex u bool Graph::push( int u) { // Traverse through all edges to find an adjacent (of u) // to which flow can be pushed for ( int i = 0; i < edge.size(); i++) { // Checks u of current edge is same as given // overflowing vertex if (edge[i].u == u) { // if flow is equal to capacity then no push // is possible if (edge[i].flow == edge[i].capacity) continue ; // Push is only possible if height of adjacent // is smaller than height of overflowing vertex if (ver[u].h > ver[edge[i].v].h) { // Flow to be pushed is equal to minimum of // remaining flow on edge and excess flow. int flow = min(edge[i].capacity - edge[i].flow, ver[u].e_flow); // Reduce excess flow for overflowing vertex ver[u].e_flow -= flow; // Increase excess flow for adjacent ver[edge[i].v].e_flow += flow; // Add residual flow (With capacity 0 and negative // flow) edge[i].flow += flow; updateReverseEdgeFlow(i, flow); return true ; } } } return false ; } // function to relabel vertex u void Graph::relabel( int u) { // Initialize minimum height of an adjacent int mh = INT_MAX; // Find the adjacent with minimum height for ( int i = 0; i < edge.size(); i++) { if (edge[i].u == u) { // if flow is equal to capacity then no // relabeling if (edge[i].flow == edge[i].capacity) continue ; // Update minimum height if (ver[edge[i].v].h < mh) { mh = ver[edge[i].v].h; // updating height of u ver[u].h = mh + 1; } } } } // main function for printing maximum flow of graph int Graph::getMaxFlow( int s, int t) { preflow(s); // loop until none of the Vertex is in overflow while (overFlowVertex(ver) != -1) { int u = overFlowVertex(ver); if (!push(u)) relabel(u); } // ver.back() returns last Vertex, whose // e_flow will be final maximum flow return ver.back().e_flow; } // Driver program to test above functions int main() { int V = 6; Graph g(V); // Creating above shown flow network g.addEdge(0, 1, 16); g.addEdge(0, 2, 13); g.addEdge(1, 2, 10); g.addEdge(2, 1, 4); g.addEdge(1, 3, 12); g.addEdge(2, 4, 14); g.addEdge(3, 2, 9); g.addEdge(3, 5, 20); g.addEdge(4, 3, 7); g.addEdge(4, 5, 4); // Initialize source and sink int s = 0, t = 5; cout << "Maximum flow is " << g.getMaxFlow(s, t); return 0; } |
Python3
# python program to implement push-relabel algorithm for # getting maximum flow of graph class Edge: def __init__( self , flow, capacity, u, v): self .flow = flow self .capacity = capacity self .u = u self .v = v # Represent a Vertex class Vertex: def __init__( self , h, e_flow): self .h = h self .e_flow = e_flow # To represent a flow network class Graph: # int V; # No. of vertices # vector<Vertex> ver; # vector<Edge> edge; def __init__( self , V): self .V = V; self .edge = [] self .ver = [] # all vertices are initialized with 0 height # and 0 excess flow for i in range (V): self .ver.append(Vertex( 0 , 0 )) def addEdge( self , u, v, capacity): # flow is initialized with 0 for all edge self .edge.append(Edge( 0 , capacity, u, v)) def preflow( self , s): # Making h of source Vertex equal to no. of vertices # Height of other vertices is 0. self .ver[s].h = len ( self .ver); for i in range ( len ( self .edge)): # If current edge goes from source if ( self .edge[i].u = = s): # Flow is equal to capacity self .edge[i].flow = self .edge[i].capacity # Initialize excess flow for adjacent v self .ver[ self .edge[i].v].e_flow + = self .edge[i].flow # Add an edge from v to s in residual graph with # capacity equal to 0 self .edge.append(Edge( - self .edge[i].flow, 0 , self .edge[i].v, s)) # returns index of overflowing Vertex def overFlowVertex( self ): for i in range ( 1 , len ( self .ver) - 1 ): if ( self .ver[i].e_flow > 0 ): return i # -1 if no overflowing Vertex return - 1 # Update reverse flow for flow added on ith Edge def updateReverseEdgeFlow( self , i, flow): u = self .edge[i].v v = self .edge[i].u for j in range ( 0 , len ( self .edge)): if ( self .edge[j].v = = v and self .edge[j].u = = u): self .edge[j].flow - = flow return # adding reverse Edge in residual graph e = Edge( 0 , flow, u, v) self .edge.append(e) # To push flow from overflowing vertex u def push( self , u): # Traverse through all edges to find an adjacent (of u) # to which flow can be pushed for i in range ( 0 , len ( self .edge)): # Checks u of current edge is same as given # overflowing vertex if ( self .edge[i].u = = u): # if flow is equal to capacity then no push # is possible if ( self .edge[i].flow = = self .edge[i].capacity): continue ; # Push is only possible if height of adjacent # is smaller than height of overflowing vertex if ( self .ver[u].h > self .ver[ self .edge[i].v].h): # Flow to be pushed is equal to minimum of # remaining flow on edge and excess flow. flow = min ( self .edge[i].capacity - self .edge[i].flow, self .ver[u].e_flow) # Reduce excess flow for overflowing vertex self .ver[u].e_flow - = flow; # Increase excess flow for adjacent self .ver[ self .edge[i].v].e_flow + = flow; # Add residual flow (With capacity 0 and negative # flow) self .edge[i].flow + = flow; self .updateReverseEdgeFlow(i, flow); return True ; return False ; # function to relabel vertex u def relabel( self , u): # Initialize minimum height of an adjacent mh = 2100000 # Find the adjacent with minimum height for i in range ( len ( self .edge)): if ( self .edge[i].u = = u): # if flow is equal to capacity then no # relabeling if ( self .edge[i].flow = = self .edge[i].capacity): continue ; # Update minimum height if ( self .ver[ self .edge[i].v].h < mh): mh = self .ver[ self .edge[i].v].h; # updating height of u self .ver[u].h = mh + 1 ; # main function for printing maximum flow of graph def getMaxFlow( self , s, t): self .preflow(s); # loop until none of the Vertex is in overflow while ( self .overFlowVertex() ! = - 1 ): u = self .overFlowVertex(); if ( self .push(u) = = False ): self .relabel(u); # ver.back() returns last Vertex, whose # e_flow will be final maximum flow return self .ver[ len ( self .ver) - 1 ].e_flow # Driver program to test above functions V = 6 ; g = Graph(V); # Creating above shown flow network g.addEdge( 0 , 1 , 16 ); g.addEdge( 0 , 2 , 13 ); g.addEdge( 1 , 2 , 10 ); g.addEdge( 2 , 1 , 4 ); g.addEdge( 1 , 3 , 12 ); g.addEdge( 2 , 4 , 14 ); g.addEdge( 3 , 2 , 9 ); g.addEdge( 3 , 5 , 20 ); g.addEdge( 4 , 3 , 7 ); g.addEdge( 4 , 5 , 4 ); # Initialize source and sink s = 0 t = 5 ; print ( "Maximum flow is " , g.getMaxFlow(s, t)); # The code is contributed by Arushi goel. |
C#
// C# program to implement push-relabel algorithm for // getting maximum flow of graph using System; using System.Collections.Generic; using System.Collections; using System.Linq; class Edge { public int flow; public int capacity; public int u; public int v; public Edge( int flow, int capacity, int u, int v) { this .flow = flow; this .capacity = capacity; this .u = u; this .v = v; } } // Represent a Vertex class Vertex { public int h; public int e_flow; public Vertex( int h, int e_flow) { this .h = h; this .e_flow = e_flow; } } // To represent a flow network class Graph { public int V; // No. of vertices public List<Vertex> ver; public List<Edge> edge; public Graph( int V) { this .V = V; ver = new List<Vertex>(); edge = new List<Edge>(); // all vertices are initialized with 0 height // and 0 excess flow for ( int i = 0; i < V; i++) ver.Add( new Vertex(0, 0)); } public void addEdge( int u, int v, int capacity) { // flow is initialized with 0 for all edge edge.Add( new Edge(0, capacity, u, v)); } public void preflow( int s) { // Making h of source Vertex equal to no. of vertices // Height of other vertices is 0. ver[s].h = ver.Count; // for ( int i = 0; i < edge.Count; i++) { // If current edge goes from source if (edge[i].u == s) { // Flow is equal to capacity edge[i].flow = edge[i].capacity; // Initialize excess flow for adjacent v ver[edge[i].v].e_flow += edge[i].flow; // Add an edge from v to s in residual graph with // capacity equal to 0 edge.Add( new Edge(-edge[i].flow, 0, edge[i].v, s)); } } } // returns index of overflowing Vertex public int overFlowVertex() { for ( int i = 1; i < ver.Count - 1; i++) if (ver[i].e_flow > 0) return i; // -1 if no overflowing Vertex return -1; } // Update reverse flow for flow added on ith Edge public void updateReverseEdgeFlow( int i, int flow) { int u = edge[i].v; int v = edge[i].u; for ( int j = 0; j < edge.Count; j++) { if (edge[j].v == v && edge[j].u == u) { edge[j].flow -= flow; return ; } } // adding reverse Edge in residual graph Edge e = new Edge(0, flow, u, v); edge.Add(e); } // To push flow from overflowing vertex u public bool push( int u) { // Traverse through all edges to find an adjacent (of u) // to which flow can be pushed for ( int i = 0; i < edge.Count; i++) { // Checks u of current edge is same as given // overflowing vertex if (edge[i].u == u) { // if flow is equal to capacity then no push // is possible if (edge[i].flow == edge[i].capacity) continue ; // Push is only possible if height of adjacent // is smaller than height of overflowing vertex if (ver[u].h > ver[edge[i].v].h) { // Flow to be pushed is equal to minimum of // remaining flow on edge and excess flow. int flow = Math.Min(edge[i].capacity - edge[i].flow, ver[u].e_flow); // Reduce excess flow for overflowing vertex ver[u].e_flow -= flow; // Increase excess flow for adjacent ver[edge[i].v].e_flow += flow; // Add residual flow (With capacity 0 and negative // flow) edge[i].flow += flow; updateReverseEdgeFlow(i, flow); return true ; } } } return false ; } // function to relabel vertex u public void relabel( int u) { // Initialize minimum height of an adjacent int mh = 2100000; // Find the adjacent with minimum height for ( int i = 0; i < edge.Count; i++) { if (edge[i].u == u) { // if flow is equal to capacity then no // relabeling if (edge[i].flow == edge[i].capacity) continue ; // Update minimum height if (ver[edge[i].v].h < mh) { mh = ver[edge[i].v].h; // updating height of u ver[u].h = mh + 1; } } } } // main function for printing maximum flow of graph public int getMaxFlow( int s, int t) { preflow(s); // loop until none of the Vertex is in overflow while (overFlowVertex() != -1) { int u = overFlowVertex(); if (!push(u)) relabel(u); } // ver.back() returns last Vertex, whose // e_flow will be final maximum flow return ver[ver.Count-1].e_flow; } } class HelloWorld { static void Main() { // Driver program to test above functions int V = 6; Graph g = new Graph(V); // Creating above shown flow network g.addEdge(0, 1, 16); g.addEdge(0, 2, 13); g.addEdge(1, 2, 10); g.addEdge(2, 1, 4); g.addEdge(1, 3, 12); g.addEdge(2, 4, 14); g.addEdge(3, 2, 9); g.addEdge(3, 5, 20); g.addEdge(4, 3, 7); g.addEdge(4, 5, 4); // Initialize source and sink int s = 0, t = 5; Console.WriteLine( "Maximum flow is " + g.getMaxFlow(s, t)); } } // The code is contributed by Arushi jindal. |
Javascript
// javascript program to implement push-relabel algorithm for // getting maximum flow of graph class Edge { constructor(flow, capacity, u, v) { this .flow = flow; this .capacity = capacity; this .u = u; this .v = v; } } // Represent a Vertex class Vertex { constructor(h, e_flow) { this .h = h; this .e_flow = e_flow; } } // To represent a flow network class Graph { // int V; // No. of vertices // vector<Vertex> ver; // vector<Edge> edge; constructor(V) { this .V = V; this .edge = new Array(); this .ver = new Array(); // all vertices are initialized with 0 height // and 0 excess flow for (let i = 0; i < V; i++) this .ver.push( new Vertex(0, 0)); } addEdge(u, v, capacity) { // flow is initialized with 0 for all edge this .edge.push( new Edge(0, capacity, u, v)); } preflow(s) { // Making h of source Vertex equal to no. of vertices // Height of other vertices is 0. this .ver[s].h = this .ver.length; // for (let i = 0; i < this .edge.length; i++) { // If current edge goes from source if ( this .edge[i].u == s) { // Flow is equal to capacity this .edge[i].flow = this .edge[i].capacity; // Initialize excess flow for adjacent v this .ver[ this .edge[i].v].e_flow += this .edge[i].flow; // Add an edge from v to s in residual graph with // capacity equal to 0 this .edge.push( new Edge(- this .edge[i].flow, 0, this .edge[i].v, s)); } } } // returns index of overflowing Vertex overFlowVertex() { for (let i = 1; i < this .ver.length - 1; i++) if ( this .ver[i].e_flow > 0) return i; // -1 if no overflowing Vertex return -1; } // Update reverse flow for flow added on ith Edge updateReverseEdgeFlow(i, flow) { let u = this .edge[i].v; let v = this .edge[i].u; for (let j = 0; j < this .edge.length; j++) { if ( this .edge[j].v == v && this .edge[j].u == u) { this .edge[j].flow -= flow; return ; } } // adding reverse Edge in residual graph let e = new Edge(0, flow, u, v); this .edge.push(e); } // To push flow from overflowing vertex u push(u) { // Traverse through all edges to find an adjacent (of u) // to which flow can be pushed for (let i = 0; i < this .edge.length; i++) { // Checks u of current edge is same as given // overflowing vertex if ( this .edge[i].u == u) { // if flow is equal to capacity then no push // is possible if ( this .edge[i].flow == this .edge[i].capacity) continue ; // Push is only possible if height of adjacent // is smaller than height of overflowing vertex if ( this .ver[u].h > this .ver[ this .edge[i].v].h) { // Flow to be pushed is equal to minimum of // remaining flow on edge and excess flow. let flow = Math.min( this .edge[i].capacity - this .edge[i].flow, this .ver[u].e_flow); // Reduce excess flow for overflowing vertex this .ver[u].e_flow -= flow; // Increase excess flow for adjacent this .ver[ this .edge[i].v].e_flow += flow; // Add residual flow (With capacity 0 and negative // flow) this .edge[i].flow += flow; this .updateReverseEdgeFlow(i, flow); return true ; } } } return false ; } // function to relabel vertex u relabel(u) { // Initialize minimum height of an adjacent let mh = 2100000; // Find the adjacent with minimum height for (let i = 0; i < this .edge.length; i++) { if ( this .edge[i].u == u) { // if flow is equal to capacity then no // relabeling if ( this .edge[i].flow == this .edge[i].capacity) continue ; // Update minimum height if ( this .ver[ this .edge[i].v].h < mh) { mh = this .ver[ this .edge[i].v].h; // updating height of u this .ver[u].h = mh + 1; } } } } // main function for printing maximum flow of graph getMaxFlow(s, t) { this .preflow(s); // loop until none of the Vertex is in overflow while ( this .overFlowVertex() != -1) { let u = this .overFlowVertex(); if (! this .push(u)) this .relabel(u); } // ver.back() returns last Vertex, whose // e_flow will be final maximum flow return this .ver[ this .ver.length-1].e_flow; } } // Driver program to test above functions let V = 6; let g = new Graph(V); // Creating above shown flow network g.addEdge(0, 1, 16); g.addEdge(0, 2, 13); g.addEdge(1, 2, 10); g.addEdge(2, 1, 4); g.addEdge(1, 3, 12); g.addEdge(2, 4, 14); g.addEdge(3, 2, 9); g.addEdge(3, 5, 20); g.addEdge(4, 3, 7); g.addEdge(4, 5, 4); // Initialize source and sink let s = 0, t = 5; console.log( "Maximum flow is " + g.getMaxFlow(s, t)); // The code is contributed by Nidhi goel. |
Maximum flow is 23
The code in this article is contributed by Siddharth Lalwani and Utkarsh Trivedi.
Please Login to comment...