Program to print the Diagonals of a Matrix in O(N) time

Given a 2D square matrix, the task is to print the Principal and Secondary diagonals of this matrix in O(N) time complexity. For O(N2) time, please refer this article.

Examples :

Input: 
4
1 2 3 4
4 3 2 1
7 8 9 6
6 5 4 3
Output:
Principal Diagonal: 1, 3, 9, 3
Secondary Diagonal: 4, 2, 8, 6

Input:
3
1 1 1
1 1 1
1 1 1
Output:
Principal Diagonal: 1, 1, 1
Secondary Diagonal: 1, 1, 1

Approach:

  1. Consider the following 4 X 4 input matrix.
    A00 A01 A02 A03
    A10 A11 A12 A13
    A20 A21 A22 A23
    A30 A31 A32 A33
    
  2. The primary diagonal is formed by the elements A00, A11, A22, A33.

    Condition for Principal Diagonal:

    The row-column condition is row = column.
  3. The secondary diagonal is formed by the elements A03, A12, A21, A30.

    Condition for Secondary Diagonal:



    The row-column condition is row = numberOfRows - column - 1.
  4. In this method, we use one loop i.e. a loop to find the diagonal elements as per below formula:
    principal diagonal = matrix[i][i];
    secondary diagonal = matrix[i][n - i - 1];
    
    where 0 &leq i &leq n
    

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to print the Diagonals of a Matrix
  
#include <bits/stdc++.h>
using namespace std;
  
const int MAX = 100;
  
// Function to print the Principal Diagonal
void printPrincipalDiagonal(int mat[][MAX], int n)
{
    cout << "Principal Diagonal: ";
  
    for (int i = 0; i < n; i++) {
  
        // Condition for principal diagonal
        cout << mat[i][i] << ", ";
    }
    cout << endl;
}
  
// Function to print the Secondary Diagonal
void printSecondaryDiagonal(int mat[][MAX], int n)
{
    cout << "Secondary Diagonal: ";
  
    for (int i = 0; i < n; i++) {
  
        // Condition for secondary diagonal
        cout << mat[i][n - i - 1] << ", ";
    }
  
    cout << endl;
}
  
// Driver code
int main()
{
    int n = 4;
    int a[][MAX] = { { 1, 2, 3, 4 },
                     { 5, 6, 7, 8 },
                     { 1, 2, 3, 4 },
                     { 5, 6, 7, 8 } };
  
    printPrincipalDiagonal(a, n);
    printSecondaryDiagonal(a, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to print the Diagonals of a Matrix 
class GFG 
{
      
    static final int MAX = 100
      
    // Function to print the Principal Diagonal 
    static void printPrincipalDiagonal(int mat[][], int n) 
    
        System.out.print("Principal Diagonal: "); 
      
        for (int i = 0; i < n; i++) 
        
      
            // Condition for principal diagonal 
            System.out.print(mat[i][i] + ", "); 
        
        System.out.println();
    
      
    // Function to print the Secondary Diagonal 
    static void printSecondaryDiagonal(int mat[][], int n) 
    
        System.out.print("Secondary Diagonal: "); 
      
        for (int i = 0; i < n; i++) 
        
      
            // Condition for secondary diagonal 
            System.out.print(mat[i][n - i - 1] + ", "); 
        
      
        System.out.println();
    
      
    // Driver code 
    public static void main (String[] args)
    
        int n = 4
        int a[][] = { { 1, 2, 3, 4 }, 
                        { 5, 6, 7, 8 }, 
                        { 1, 2, 3, 4 }, 
                        { 5, 6, 7, 8 } }; 
      
        printPrincipalDiagonal(a, n); 
        printSecondaryDiagonal(a, n); 
    
}
  
// This code is contributed by AnkitRai01

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program to print the Diagonals of a Matrix 
MAX = 100;
  
# Function to print the Principal Diagonal
def printPrincipalDiagonal(mat, n):
    print("Principal Diagonal: ", end = "");
  
    for i in range(n):
  
        # Condition for principal diagonal
        print(mat[i][i], end= ", ");
      
    print();
  
# Function to print the Secondary Diagonal
def printSecondaryDiagonal(mat, n):
    print("Secondary Diagonal: ", end = "");
  
    for i in range(n):
  
        # Condition for secondary diagonal
        print(mat[i][n - i - 1], end = ", ");
      
    print();
  
# Driver code
if __name__ == '__main__':
    n = 4;
    a = [[ 1, 2, 3, 4 ],
        [ 5, 6, 7, 8 ],
        [ 1, 2, 3, 4 ],
        [ 5, 6, 7, 8 ]];
  
    printPrincipalDiagonal(a, n);
    printSecondaryDiagonal(a, n);
  
# This code is contributed by PrinciRaj1992

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to print the Diagonals of a Matrix 
using System;
  
class GFG 
      
    // Function to print the Principal Diagonal 
    static void printPrincipalDiagonal(int [,]mat, int n) 
    
        Console.Write("Principal Diagonal: "); 
      
        for (int i = 0; i < n; i++) 
        
      
            // Condition for principal diagonal 
            Console.Write(mat[i, i] + ", "); 
        
        Console.WriteLine(); 
    
      
    // Function to print the Secondary Diagonal 
    static void printSecondaryDiagonal(int [,]mat, int n) 
    
        Console.Write("Secondary Diagonal: "); 
      
        for (int i = 0; i < n; i++) 
        
      
            // Condition for secondary diagonal 
            Console.Write(mat[i, n - i - 1] + ", "); 
        
      
        Console.WriteLine(); 
    
      
    // Driver code 
    public static void Main() 
    
        int n = 4; 
        int [,]a = { { 1, 2, 3, 4 }, 
                     { 5, 6, 7, 8 }, 
                     { 1, 2, 3, 4 }, 
                     { 5, 6, 7, 8 } }; 
      
        printPrincipalDiagonal(a, n); 
        printSecondaryDiagonal(a, n); 
    
  
// This code is contributed by AnkitRai01 

chevron_right


Output:

Principal Diagonal: 1, 6, 3, 8, 
Secondary Diagonal: 4, 7, 2, 5,

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.