Given a string representing infix notation. The task is to convert it to an expression tree.
Expression Tree is a binary tree where the operands are represented by leaf nodes and operators are represented by intermediate nodes. No node can have a single child.
Construction of Expression tree
The algorithm follows a combination of shunting yard along with postfix-to-expression tree conversion.
Consider the below line:
((s[i]!='^' && p[stC.top()]>=p[s[i]]) ||
(s[i]=='^' && p[stC.top()]>p[s[i]])))
You might remember that unlike ‘+’, ‘-‘, ‘*’ and ‘/’; ‘^’ is right associative.
In simpler terms, a^b^c is a^(b^c) not (a^b)^c. So it must be evaluated from the right.
Now lets take a look at how does the algorithm work,(Take a quick glance at the code to get a better idea of the variables used)
Let us have an expression s = ((a+b)*c-e*f)
currently both the stacks are empty-
(we'll use C to denote the char stack and N for node stack)
s[0] = '(' ((a+b)*c-e*f)
^
C|(|, N| |
s[1] = '(' ((a+b)*c-e*f)
^
|(|
C|(|, N| |
s[2] = 'a' ((a+b)*c-e*f)
^
|(|
C|(|, N|a|
s[3] = '+' ((a+b)*c-e*f)
^
|+|
|(|
C|(|, N|a|
s[4] = 'b' ((a+b)*c-e*f)
^
|+|
|(| |b|
C|(|, N|a|
s[5] = ')' ((a+b)*c-e*f)
^
|+| t = '+' +
|(| |b| -> t1= 'b' / \ ->
C|(|, N|a| t2= 'a' a b C|(|, N|+|
s[6] = '*' ((a+b)*c-e*f)
^
|*|
C|(|, N|+|
s[7] = 'c' ((a+b)*c-e*f)
^
|*| |c|
C|(|, N|+|
s[8] = '-' ((a+b)*c-e*f) now (C.top(*)>s[8](-))
^ t = '*' *
|*| |c| t1 = c / \ -> |-|
C|(|, N|+| t2 = + + c C|(|, N|*|
/ \
a b
s[9] = 'e' ((a+b)*c-e*f)
^
|-| |e|
C|(|, N|*|
s[10] = '*' ((a+b)*c-e*f) now (C.top(-)>s[10](*))
^
|*|
|-| |e|
C|(|, N|*|
s[11] = 'f' ((a+b)*c-e*f)
^
|*| |f|
|-| |e|
C|(|, N|*|
s[12] = ')' ((a+b)*c-e*f)
1> ^
|*| |f| t = '*' *
|-| |e| -> t1= 'f' -> / \ -> |-| |*|
C|(|, N|*| t2= 'e' e f C|(|, N|*|
2>
t = '-' -
|-| |*| -> t1= '*' -> / \ ->
C|(|, N|*| t2= '*' * * C| |, N|-|
/ \ / \
+ c e f
/ \
a b
now make (-) the root of the tree
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
typedef struct node
{
char data;
struct node *left, *right;
} * nptr;
nptr newNode( char c)
{
nptr n = new node;
n->data = c;
n->left = n->right = nullptr;
return n;
}
nptr build(string& s)
{
stack<nptr> stN;
stack< char > stC;
nptr t, t1, t2;
int p[123] = { 0 };
p[ '+' ] = p[ '-' ] = 1, p[ '/' ] = p[ '*' ] = 2, p[ '^' ] = 3,
p[ ')' ] = 0;
for ( int i = 0; i < s.length(); i++)
{
if (s[i] == '(' ) {
stC.push(s[i]);
}
else if ( isalpha (s[i]))
{
t = newNode(s[i]);
stN.push(t);
}
else if (p[s[i]] > 0)
{
while (
!stC.empty() && stC.top() != '('
&& ((s[i] != '^' && p[stC.top()] >= p[s[i]])
|| (s[i] == '^'
&& p[stC.top()] > p[s[i]])))
{
t = newNode(stC.top());
stC.pop();
t1 = stN.top();
stN.pop();
t2 = stN.top();
stN.pop();
t->left = t2;
t->right = t1;
stN.push(t);
}
stC.push(s[i]);
}
else if (s[i] == ')' ) {
while (!stC.empty() && stC.top() != '(' )
{
t = newNode(stC.top());
stC.pop();
t1 = stN.top();
stN.pop();
t2 = stN.top();
stN.pop();
t->left = t2;
t->right = t1;
stN.push(t);
}
stC.pop();
}
}
t = stN.top();
return t;
}
void postorder(nptr root)
{
if (root)
{
postorder(root->left);
postorder(root->right);
cout << root->data;
}
}
int main()
{
string s = "(a^b^(c/d/e-f)^(x*y-m*n))" ;
s = "(" + s;
s += ")" ;
nptr root = build(s);
postorder(root);
return 0;
}
|
Java
import java.util.*;
class GFG
{
static class nptr
{
char data;
nptr left, right;
} ;
static nptr newNode( char c)
{
nptr n = new nptr();
n.data = c;
n.left = n.right = null ;
return n;
}
static nptr build(String s)
{
Stack<nptr> stN = new Stack<>();
Stack<Character> stC = new Stack<>();
nptr t, t1, t2;
int []p = new int [ 123 ];
p[ '+' ] = p[ '-' ] = 1 ;
p[ '/' ] = p[ '*' ] = 2 ;
p[ '^' ] = 3 ;
p[ ')' ] = 0 ;
for ( int i = 0 ; i < s.length(); i++)
{
if (s.charAt(i) == '(' ) {
stC.add(s.charAt(i));
}
else if (Character.isAlphabetic(s.charAt(i)))
{
t = newNode(s.charAt(i));
stN.add(t);
}
else if (p[s.charAt(i)] > 0 )
{
while (
!stC.isEmpty() && stC.peek() != '('
&& ((s.charAt(i) != '^' && p[stC.peek()] >= p[s.charAt(i)])
|| (s.charAt(i) == '^'
&& p[stC.peek()] > p[s.charAt(i)])))
{
t = newNode(stC.peek());
stC.pop();
t1 = stN.peek();
stN.pop();
t2 = stN.peek();
stN.pop();
t.left = t2;
t.right = t1;
stN.add(t);
}
stC.push(s.charAt(i));
}
else if (s.charAt(i) == ')' ) {
while (!stC.isEmpty() && stC.peek() != '(' )
{
t = newNode(stC.peek());
stC.pop();
t1 = stN.peek();
stN.pop();
t2 = stN.peek();
stN.pop();
t.left = t2;
t.right = t1;
stN.add(t);
}
stC.pop();
}
}
t = stN.peek();
return t;
}
static void postorder(nptr root)
{
if (root != null )
{
postorder(root.left);
postorder(root.right);
System.out.print(root.data);
}
}
public static void main(String[] args)
{
String s = "(a^b^(c/d/e-f)^(x*y-m*n))" ;
s = "(" + s;
s += ")" ;
nptr root = build(s);
postorder(root);
}
}
|
Python3
class nptr:
def __init__( self , c):
self .data = c
self .left = None
self .right = None
def newNode(c):
n = nptr(c)
return n
def build(s):
stN = []
stC = []
p = [ 0 ] * ( 123 )
p[ ord ( '+' )] = p[ ord ( '-' )] = 1
p[ ord ( '/' )] = p[ ord ( '*' )] = 2
p[ ord ( '^' )] = 3
p[ ord ( ')' )] = 0
for i in range ( len (s)):
if (s[i] = = '(' ):
stC.append(s[i])
elif (s[i].isalpha()):
t = newNode(s[i])
stN.append(t)
elif (p[ ord (s[i])] > 0 ):
while ( len (stC) ! = 0 and stC[ - 1 ] ! = '(' and ((s[i] ! = '^' and p[ ord (stC[ - 1 ])] > = p[ ord (s[i])])
or (s[i] = = '^' and
p[ ord (stC[ - 1 ])] > p[ ord (s[i])]))):
t = newNode(stC[ - 1 ])
stC.pop()
t1 = stN[ - 1 ]
stN.pop()
t2 = stN[ - 1 ]
stN.pop()
t.left = t2
t.right = t1
stN.append(t)
stC.append(s[i])
elif (s[i] = = ')' ):
while ( len (stC) ! = 0 and stC[ - 1 ] ! = '(' ):
t = newNode(stC[ - 1 ])
stC.pop()
t1 = stN[ - 1 ]
stN.pop()
t2 = stN[ - 1 ]
stN.pop()
t.left = t2
t.right = t1
stN.append(t)
stC.pop()
t = stN[ - 1 ]
return t
def postorder(root):
if (root ! = None ):
postorder(root.left)
postorder(root.right)
print (root.data, end = "")
s = "(a^b^(c/d/e-f)^(x*y-m*n))"
s = "(" + s
s + = ")"
root = build(s)
postorder(root)
|
C#
using System;
using System.Collections.Generic;
class GFG
{
public class nptr
{
public char data;
public nptr left, right;
} ;
static nptr newNode( char c)
{
nptr n = new nptr();
n.data = c;
n.left = n.right = null ;
return n;
}
static nptr build(String s)
{
Stack<nptr> stN = new Stack<nptr>();
Stack< char > stC = new Stack< char >();
nptr t, t1, t2;
int []p = new int [123];
p[ '+' ] = p[ '-' ] = 1;
p[ '/' ] = p[ '*' ] = 2;
p[ '^' ] = 3;
p[ ')' ] = 0;
for ( int i = 0; i < s.Length; i++)
{
if (s[i] == '(' )
{
stC.Push(s[i]);
}
else if ( char .IsLetter(s[i]))
{
t = newNode(s[i]);
stN.Push(t);
}
else if (p[s[i]] > 0)
{
while (stC.Count != 0 && stC.Peek() != '('
&& ((s[i] != '^' && p[stC.Peek()] >= p[s[i]])
|| (s[i] == '^' && p[stC.Peek()] > p[s[i]])))
{
t = newNode(stC.Peek());
stC.Pop();
t1 = stN.Peek();
stN.Pop();
t2 = stN.Peek();
stN.Pop();
t.left = t2;
t.right = t1;
stN.Push(t);
}
stC.Push(s[i]);
}
else if (s[i] == ')' )
{
while (stC.Count != 0 && stC.Peek() != '(' )
{
t = newNode(stC.Peek());
stC.Pop();
t1 = stN.Peek();
stN.Pop();
t2 = stN.Peek();
stN.Pop();
t.left = t2;
t.right = t1;
stN.Push(t);
}
stC.Pop();
}
}
t = stN.Peek();
return t;
}
static void postorder(nptr root)
{
if (root != null )
{
postorder(root.left);
postorder(root.right);
Console.Write(root.data);
}
}
public static void Main(String[] args)
{
String s = "(a^b^(c/d/e-f)^(x*y-m*n))" ;
s = "(" + s;
s += ")" ;
nptr root = build(s);
postorder(root);
}
}
|
Javascript
<script>
class nptr
{
constructor(c) {
this .left = null ;
this .right = null ;
this .data = c;
}
}
function newNode(c)
{
let n = new nptr(c);
return n;
}
function build(s)
{
let stN = [];
let stC = [];
let t, t1, t2;
let p = new Array(123);
p[ '+' .charCodeAt()] = p[ '-' .charCodeAt()] = 1;
p[ '/' .charCodeAt()] = p[ '*' .charCodeAt()] = 2;
p[ '^' .charCodeAt()] = 3;
p[ ')' .charCodeAt()] = 0;
for (let i = 0; i < s.length; i++)
{
if (s[i] == '(' )
{
stC.push(s[i]);
}
else if ((/[a-zA-Z]/).test(s[i]))
{
t = newNode(s[i]);
stN.push(t);
}
else if (p[s[i].charCodeAt()] > 0)
{
while (stC.length != 0 && stC[stC.length - 1] != '('
&& ((s[i] != '^' &&
p[stC[stC.length - 1].charCodeAt()] >=
p[s[i].charCodeAt()])
|| (s[i] == '^' &&
p[stC[stC.length - 1].charCodeAt()] >
p[s[i].charCodeAt()])))
{
t = newNode(stC[stC.length - 1]);
stC.pop();
t1 = stN[stN.length - 1];
stN.pop();
t2 = stN[stN.length - 1];
stN.pop();
t.left = t2;
t.right = t1;
stN.push(t);
}
stC.push(s[i]);
}
else if (s[i] == ')' )
{
while (stC.length != 0 &&
stC[stC.length - 1] != '(' )
{
t = newNode(stC[stC.length - 1]);
stC.pop();
t1 = stN[stN.length - 1];
stN.pop();
t2 = stN[stN.length - 1];
stN.pop();
t.left = t2;
t.right = t1;
stN.push(t);
}
stC.pop();
}
}
t = stN[stN.length - 1];
return t;
}
function postorder(root)
{
if (root != null )
{
postorder(root.left);
postorder(root.right);
document.write(root.data);
}
}
let s = "(a^b^(c/d/e-f)^(x*y-m*n))" ;
s = "(" + s;
s += ")" ;
let root = build(s);
postorder(root);
</script>
|
Output
abcd/e/f-xy*mn*-^^^
The time Complexity is O(n) as each character is accessed only once.
The space Complexity is O(n) as (char_stack + node_stack) <= n
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!