Add two fraction a/b and c/d and print answer in simplest form.
Examples :
Input: 1/2 + 3/2
Output: 2/1
Input: 1/3 + 3/9
Output: 2/3
Input: 1/5 + 3/15
Output: 2/5
Algorithm to add two fractions
- Find a common denominator by finding the LCM (Least Common Multiple) of the two denominators.
- Change the fractions to have the same denominator and add both terms.
- Reduce the final fraction obtained into its simpler form by dividing both numerator and denominator by their largest common factor.
C++
#include<bits/stdc++.h>
using namespace std;
int gcd( int a, int b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
void lowest( int &den3, int &num3)
{
int common_factor = gcd(num3,den3);
den3 = den3/common_factor;
num3 = num3/common_factor;
}
void addFraction( int num1, int den1, int num2,
int den2, int &num3, int &den3)
{
den3 = gcd(den1,den2);
den3 = (den1*den2) / den3;
num3 = (num1)*(den3/den1) + (num2)*(den3/den2);
lowest(den3,num3);
}
int main()
{
int num1=1, den1=500, num2=2, den2=1500, den3, num3;
addFraction(num1, den1, num2, den2, num3, den3);
printf ( "%d/%d + %d/%d is equal to %d/%d\n" , num1, den1,
num2, den2, num3, den3);
return 0;
}
|
Java
class GFG{
static int gcd( int a, int b)
{
if (a == 0 )
return b;
return gcd(b%a, a);
}
static void lowest( int den3, int num3)
{
int common_factor = gcd(num3,den3);
den3 = den3/common_factor;
num3 = num3/common_factor;
System.out.println(num3+ "/" +den3);
}
static void addFraction( int num1, int den1,
int num2, int den2)
{
int den3 = gcd(den1,den2);
den3 = (den1*den2) / den3;
int num3 = (num1)*(den3/den1) + (num2)*(den3/den2);
lowest(den3,num3);
}
public static void main(String[] args)
{
int num1= 1 , den1= 500 , num2= 2 , den2= 1500 ;
System.out.print(num1+ "/" +den1+ " + " +num2+ "/" +den2+ " is equal to " );
addFraction(num1, den1, num2, den2);
}
}
|
Python3
def gcd(a, b):
if (a = = 0 ):
return b;
return gcd(b % a, a);
def lowest(den3, num3):
common_factor = gcd(num3, den3);
den3 = int (den3 / common_factor);
num3 = int (num3 / common_factor);
print (num3, "/" , den3);
def addFraction(num1, den1, num2, den2):
den3 = gcd(den1, den2);
den3 = (den1 * den2) / den3;
num3 = ((num1) * (den3 / den1) +
(num2) * (den3 / den2));
lowest(den3, num3);
num1 = 1 ; den1 = 500 ;
num2 = 2 ; den2 = 1500 ;
print (num1, "/" , den1, " + " , num2, "/" ,
den2, " is equal to " , end = "");
addFraction(num1, den1, num2, den2);
|
C#
class GFG{
static int gcd( int a, int b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
static void lowest( int den3, int num3)
{
int common_factor = gcd(num3,den3);
den3 = den3/common_factor;
num3 = num3/common_factor;
System.Console.WriteLine(num3+ "/" +den3);
}
static void addFraction( int num1, int den1, int num2, int den2)
{
int den3 = gcd(den1,den2);
den3 = (den1*den2) / den3;
int num3 = (num1)*(den3/den1) + (num2)*(den3/den2);
lowest(den3,num3);
}
public static void Main()
{
int num1=1, den1=500, num2=2, den2=1500;
System.Console.Write(num1+ "/" +den1+ " + " +num2+ "/" +den2+ " is equal to " );
addFraction(num1, den1, num2, den2);
}
}
|
PHP
<?php
function gcd( $a , $b )
{
if ( $a == 0)
return $b ;
return gcd( $b % $a , $a );
}
function lowest(& $den3 , & $num3 )
{
$common_factor = gcd( $num3 , $den3 );
$den3 = (int) $den3 / $common_factor ;
$num3 = (int) $num3 / $common_factor ;
}
function addFraction( $num1 , $den1 , $num2 ,
$den2 , & $num3 , & $den3 )
{
$den3 = gcd( $den1 , $den2 );
$den3 = ( $den1 * $den2 ) / $den3 ;
$num3 = ( $num1 ) * ( $den3 / $den1 ) +
( $num2 ) * ( $den3 / $den2 );
lowest( $den3 , $num3 );
}
$num1 = 1; $den1 = 500;
$num2 = 2; $den2 = 1500;
$den3 ; $num3 ;
addFraction( $num1 , $den1 , $num2 ,
$den2 , $num3 , $den3 );
echo $num1 , "/" , $den1 , " + " ,
$num2 , "/" , $den2 , " is equal to " ,
$num3 , "/" , $den3 , "\n" ;
?>
|
Javascript
<script>
const gcd = (a, b) => {
if (a == 0)
return b;
return gcd(b % a, a);
}
const lowest = (den3, num3) => {
let common_factor = gcd(num3, den3);
den3 = parseInt(den3 / common_factor);
num3 = parseInt(num3 / common_factor);
document.write(`${num3}/${den3}`)
}
const addFraction = (num1, den1, num2, den2) => {
let den3 = gcd(den1, den2);
den3 = (den1 * den2) / den3;
let num3 = ((num1) * (den3 / den1) +
(num2) * (den3 / den2));
lowest(den3, num3);
}
let num1 = 1;
let den1 = 500;
let num2 = 2;
let den2 = 1500;
document.write(`${num1}/${den1} + ${num2}/${den2} is equal to `);
addFraction(num1, den1, num2, den2);
</script>
|
Output :
1/500 + 2/1500 is equal to 1/300
Time Complexity: O(log(min(a, b)), where a and b are two integers.
Auxiliary Space: O(1), no extra space required so it is a constant.
See below for doing the same using library functions.
Ratio Manipulations in C++ | Set 1 (Arithmetic)
This article is contributed by Rahul Agrawal .If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.