Given a string, find all ways to break the given string in bracket form. Enclose each substring within a parenthesis.
Examples:
Input : abc
Output: (a)(b)(c)
(a)(bc)
(ab)(c)
(abc)
Input : abcd
Output : (a)(b)(c)(d)
(a)(b)(cd)
(a)(bc)(d)
(a)(bcd)
(ab)(c)(d)
(ab)(cd)
(abc)(d)
(abcd)
We strongly recommend you to minimize your browser and try this yourself first.
The idea is to use recursion. We maintain two parameters – index of the next character to be processed and the output string so far. We start from index of next character to be processed, append substring formed by unprocessed string to the output string and recurse on remaining string until we process the whole string. We use std::substr to form the output string. substr(pos, n) returns a substring of length n that starts at position pos of current string.
Below diagram shows recursion tree for input string “abc”. Each node on the diagram shows processed string (marked by green) and unprocessed string (marked by red).

Below is the implementation of the above idea
C++
#include <iostream>
using namespace std;
void findCombinations(string str, int index, string out)
{
if (index == str.length())
cout << out << endl;
for ( int i = index; i < str.length(); i++)
{
findCombinations(
str,
i + 1,
out + "(" + str.substr(index, i + 1 - index)
+ ")" );
}
}
int main()
{
string str = "abcd" ;
findCombinations(str, 0, "" );
return 0;
}
|
Java
class GFG
{
static void findCombinations(String str, int index,
String out)
{
if (index == str.length())
System.out.println(out);
for ( int i = index; i < str.length(); i++)
findCombinations(str, i + 1 , out +
"(" + str.substring(index, i+ 1 ) + ")" );
}
public static void main (String[] args)
{
String str = "abcd" ;
findCombinations(str, 0 , "" );
}
}
|
Python3
def findCombinations(string, index, out):
if index = = len (string):
print (out)
for i in range (index, len (string), 1 ):
findCombinations(string, i + 1 , out + "(" +
string[index:i + 1 ] + ")" )
if __name__ = = "__main__" :
string = "abcd"
findCombinations(string, 0 , "")
|
C#
using System;
class GFG {
public static void
findCombinations( string str, int index, string @ out )
{
if (index == str.Length) {
Console.WriteLine(@ out );
}
for ( int i = index; i < str.Length; i++) {
findCombinations(
str, i + 1,
@ out + "("
+ str.Substring(index, (i + 1) - index)
+ ")" );
}
}
public static void Main( string [] args)
{
string str = "abcd" ;
findCombinations(str, 0, "" );
}
}
|
Javascript
function findCombinations(string, index, out) {
if (index == string.length) {
console.log(out);
}
for (let i = index; i < string.length; i++) {
findCombinations(string, i + 1, out + "(" + string.substring(index, i + 1) + ")" );
}
}
const string = "abcd" ;
findCombinations(string, 0, "" );
|
Output
(a)(b)(c)(d)
(a)(b)(cd)
(a)(bc)(d)
(a)(bcd)
(ab)(c)(d)
(ab)(cd)
(abc)(d)
(abcd)
Time Complexity: O(N2)
Auxiliary Space: O(N2)
If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
12 Mar, 2023
Like Article
Save Article