Open In App
Related Articles

Print the path between any two nodes of a tree | DFS

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given a tree of distinct nodes N with N-1 edges and a pair of nodes P. The task is to find and print the path between the two given nodes of the tree using DFS.
 

Input: N = 10
          1
       /    \
      2      3
    / | \  / | \
   4  5 6  7 8  9
Pair = {4, 8}
Output: 4 -> 2 -> 1 -> 3 -> 8

Input: N = 3
      1
     /  \
    2    3
Pair = {2, 3}
Output:  2 -> 1 -> 3


 


For example, in the above tree the path between nodes 5 and 3 is 5 -> 2 -> 1 -> 3
Path between nodes 4 and 8 is 4 -> 2 -> 1 -> 3 -> 8.

Approach: 

  • The idea is to run DFS from the source node and push the traversed nodes into a stack till the destination node is traversed.
  • Whenever backtracking occurs pop the node from the stack.

Note: There should be a path between the given pair of nodes.

Below is the implementation of the above approach:  

C++

// C++ implementation
#include <bits/stdc++.h>
using namespace std;
 
// An utility function to add an edge in an
// undirected graph.
void addEdge(vector<int> v[],
             int x,
             int y)
{
    v[x].push_back(y);
    v[y].push_back(x);
}
 
// A function to print the path between
// the given pair of nodes.
void printPath(vector<int> stack)
{
    int i;
    for (i = 0; i < (int)stack.size() - 1;
         i++) {
        cout << stack[i] << " -> ";
    }
    cout << stack[i];
}
 
// An utility function to do
// DFS of graph recursively
// from a given vertex x.
void DFS(vector<int> v[],
         bool vis[],
         int x,
         int y,
         vector<int> stack)
{
    stack.push_back(x);
    if (x == y) {
 
        // print the path and return on
        // reaching the destination node
        printPath(stack);
        return;
    }
    vis[x] = true;
 
    // if backtracking is taking place
    if (!v[x].empty()) {
        for (int j = 0; j < v[x].size(); j++) {
            // if the node is not visited
            if (vis[v[x][j]] == false)
                DFS(v, vis, v[x][j], y, stack);
        }
    }
 
    stack.pop_back();
}
 
// A utility function to initialise
// visited for the node and call
// DFS function for a given vertex x.
void DFSCall(int x,
             int y,
             vector<int> v[],
             int n,
             vector<int> stack)
{
    // visited array
    bool vis[n + 1];
 
    memset(vis, false, sizeof(vis));
 
    // DFS function call
    DFS(v, vis, x, y, stack);
}
 
// Driver Code
int main()
{
    int n = 10;
    vector<int> v[n], stack;
 
    // Vertex numbers should be from 1 to 9.
    addEdge(v, 1, 2);
    addEdge(v, 1, 3);
    addEdge(v, 2, 4);
    addEdge(v, 2, 5);
    addEdge(v, 2, 6);
    addEdge(v, 3, 7);
    addEdge(v, 3, 8);
    addEdge(v, 3, 9);
 
    // Function Call
    DFSCall(4, 8, v, n, stack);
 
    return 0;
}

                    

Java

// Java implementation of the above approach
import java.util.*;
class GFG
{
    static Vector<Vector<Integer>> v = new Vector<Vector<Integer>>();
     
    // An utility function to add an edge in an
    // undirected graph.
    static void addEdge(int x, int y){
        v.get(x).add(y);
        v.get(y).add(x);
    }
     
    // A function to print the path between
    // the given pair of nodes.
    static void printPath(Vector<Integer> stack)
    {
        for(int i = 0; i < stack.size() - 1; i++)
        {
            System.out.print(stack.get(i) + " -> ");
        }
        System.out.println(stack.get(stack.size() - 1));
    }
     
    // An utility function to do
    // DFS of graph recursively
    // from a given vertex x.
    static void DFS(boolean vis[], int x, int y, Vector<Integer> stack)
    {
        stack.add(x);
        if (x == y)
        {
           
            // print the path and return on
            // reaching the destination node
            printPath(stack);
            return;
        }
        vis[x] = true;
       
        // if backtracking is taking place     
        if (v.get(x).size() > 0)
        {
            for(int j = 0; j < v.get(x).size(); j++)
            {
               
                // if the node is not visited
                if (vis[v.get(x).get(j)] == false)
                {
                    DFS(vis, v.get(x).get(j), y, stack);
                }
            }
        }
         
        stack.remove(stack.size() - 1);
    }
     
    // A utility function to initialise
    // visited for the node and call
    // DFS function for a given vertex x.
    static void DFSCall(int x, int y, int n,
                        Vector<Integer> stack)
    {
       
        // visited array
        boolean vis[] = new boolean[n + 1];
        Arrays.fill(vis, false);
       
        // memset(vis, false, sizeof(vis))
       
        // DFS function call
        DFS(vis, x, y, stack);
    }
     
  // Driver code
    public static void main(String[] args)
    {
        for(int i = 0; i < 100; i++)
        {
            v.add(new Vector<Integer>());
        }
     
        int n = 10;
        Vector<Integer> stack = new Vector<Integer>();
           
        // Vertex numbers should be from 1 to 9.
        addEdge(1, 2);
        addEdge(1, 3);
        addEdge(2, 4);
        addEdge(2, 5);
        addEdge(2, 6);
        addEdge(3, 7);
        addEdge(3, 8);
        addEdge(3, 9);
           
        // Function Call
        DFSCall(4, 8, n, stack);
    }
}
 
// This code is contributed by divyeshrabadiya07

                    

Python3

# Python3 implementation of the above approach
v = [[] for i in range(100)]
 
# An utility function to add an edge in an
# undirected graph.
def addEdge(x, y):
    v[x].append(y)
    v[y].append(x)
 
# A function to print the path between
# the given pair of nodes.
def printPath(stack):
    for i in range(len(stack) - 1):
        print(stack[i], end = " -> ")
    print(stack[-1])
 
# An utility function to do
# DFS of graph recursively
# from a given vertex x.
def DFS(vis, x, y, stack):
    stack.append(x)
    if (x == y):
 
        # print the path and return on
        # reaching the destination node
        printPath(stack)
        return
    vis[x] = True
 
    # if backtracking is taking place
 
    if (len(v[x]) > 0):
        for j in v[x]:
             
            # if the node is not visited
            if (vis[j] == False):
                DFS(vis, j, y, stack)
                 
    del stack[-1]
 
# A utility function to initialise
# visited for the node and call
# DFS function for a given vertex x.
def DFSCall(x, y, n, stack):
     
    # visited array
    vis = [0 for i in range(n + 1)]
 
    #memset(vis, false, sizeof(vis))
 
    # DFS function call
    DFS(vis, x, y, stack)
 
# Driver Code
n = 10
stack = []
 
# Vertex numbers should be from 1 to 9.
addEdge(1, 2)
addEdge(1, 3)
addEdge(2, 4)
addEdge(2, 5)
addEdge(2, 6)
addEdge(3, 7)
addEdge(3, 8)
addEdge(3, 9)
 
# Function Call
DFSCall(4, 8, n, stack)
     
# This code is contributed by Mohit Kumar

                    

C#

// C# implementation of the above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG
{
    static List<List<int>> v = new List<List<int>>();
     
    // An utility function to Add an edge in an
    // undirected graph.
    static void addEdge(int x, int y)
    {
        v[x].Add(y);
        v[y].Add(x);
    }
     
    // A function to print the path between
    // the given pair of nodes.
    static void printPath(List<int> stack)
    {
        for(int i = 0; i < stack.Count - 1; i++)
        {
            Console.Write(stack[i] + " -> ");
        }
        Console.WriteLine(stack[stack.Count - 1]);
    }
     
    // An utility function to do
    // DFS of graph recursively
    // from a given vertex x.
    static void DFS(bool []vis, int x, int y, List<int> stack)
    {
        stack.Add(x);
        if (x == y)
        {
           
            // print the path and return on
            // reaching the destination node
            printPath(stack);
            return;
        }
        vis[x] = true;
       
        // if backtracking is taking place     
        if (v[x].Count > 0)
        {
            for(int j = 0; j < v[x].Count; j++)
            {
               
                // if the node is not visited
                if (vis[v[x][j]] == false)
                {
                    DFS(vis, v[x][j], y, stack);
                }
            }
        }        
        stack.RemoveAt(stack.Count - 1);
    }
     
    // A utility function to initialise
    // visited for the node and call
    // DFS function for a given vertex x.
    static void DFSCall(int x, int y, int n,
                        List<int> stack)
    {
       
        // visited array
        bool []vis = new bool[n + 1];
        Array.Fill(vis, false);
       
        // memset(vis, false, sizeof(vis))
       
        // DFS function call
        DFS(vis, x, y, stack);
    }
     
  // Driver code
    public static void Main(string[] args)
    {
        for(int i = 0; i < 100; i++)
        {
            v.Add(new List<int>());
        }
     
        int n = 10;
        List<int> stack = new List<int>();
           
        // Vertex numbers should be from 1 to 9.
        addEdge(1, 2);
        addEdge(1, 3);
        addEdge(2, 4);
        addEdge(2, 5);
        addEdge(2, 6);
        addEdge(3, 7);
        addEdge(3, 8);
        addEdge(3, 9);
           
        // Function Call
        DFSCall(4, 8, n, stack);
    }
}
 
// This code is contributed by rutvik_56

                    

Javascript

<script>
 
// Javascript implementation of the above approach
let v = [];
 
// An utility function to add an edge in an
// undirected graph.
function addEdge(x, y)
{
    v[x].push(y);
    v[y].push(x);
}
 
// A function to print the path between
// the given pair of nodes.
function printPath(stack)
{
    for(let i = 0; i < stack.length - 1; i++)
    {
        document.write(stack[i] + " -> ");
    }
    document.write(stack[stack.length - 1] + "<br>");
}
 
// An utility function to do
// DFS of graph recursively
// from a given vertex x.
function DFS(vis, x, y, stack)
{
    stack.push(x);
    if (x == y)
    {
         
        // Print the path and return on
        // reaching the destination node
        printPath(stack);
        return;
    }
    vis[x] = true;
    
    // If backtracking is taking place    
    if (v[x].length > 0)
    {
        for(let j = 0; j < v[x].length; j++)
        {
            
            // If the node is not visited
            if (vis[v[x][j]] == false)
            {
                DFS(vis, v[x][j], y, stack);
            }
        }
    }
    stack.pop();
}
 
// A utility function to initialise
// visited for the node and call
// DFS function for a given vertex x.
function DFSCall(x, y, n, stack)
{
     
    // Visited array
    let vis = new Array(n + 1);
    for(let i = 0; i < (n + 1); i++)
    {
        vis[i] = false;
    }
    
    // memset(vis, false, sizeof(vis))
    
    // DFS function call
    DFS(vis, x, y, stack);
}
 
// Driver code
for(let i = 0; i < 100; i++)
{
    v.push([]);
}
 
let n = 10;
let stack = [];
    
// Vertex numbers should be from 1 to 9.
addEdge(1, 2);
addEdge(1, 3);
addEdge(2, 4);
addEdge(2, 5);
addEdge(2, 6);
addEdge(3, 7);
addEdge(3, 8);
addEdge(3, 9);
    
// Function Call
DFSCall(4, 8, n, stack);
 
// This code is contributed by patel2127
 
</script>

                    

Output: 
4 -> 2 -> 1 -> 3 -> 8

 

Efficient Approach : 

In this approach we will utilise the concept of Lowest Common Ancestor (LCA).

1. We will find level and parent of every node using DFS.

2. We will find lowest common ancestor (LCA) of the two given nodes.

3. Starting from the first node we will travel to the LCA and keep on pushing

the intermediates nodes in our path vector.

4. Then, from the second node we will again travel to the LCA but this time

we will reverse the encountered intermediate nodes and then push them in

our path vector.

5. Finally, print the path vector to get the path between the two nodes.

C++

// C++ implementation for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// An utility function to add an edge in the tree
void addEdge(vector<int> adj[], int x,
             int y)
{
    adj[x].push_back(y);
    adj[y].push_back(x);
}
 
// running dfs to find level and parent of every node
void dfs(vector<int> adj[], int node, int l,
            int p, int lvl[], int par[])
{
   lvl[node] = l;
   par[node] = p;
   
   for(int child : adj[node])
   {
      if(child != p)
        dfs(adj, child, l+1, node, lvl, par);
   }
}
 
int LCA(int a, int b, int par[], int lvl[])
   // if node a is at deeper level than
   // node b
   if(lvl[a] > lvl[b])
    swap(a, b);
    
   // finding the difference in levels
   // of node a and b
   int diff = lvl[b] - lvl[a];
    
   // moving b to the level of a
   while(diff != 0)
   {
      b = par[b];
      diff--;
   }
    
   // means we have found the LCA
   if(a == b)
    return a;
    
   // finding the LCA
   while(a != b)
    a=par[a], b=par[b];
 
   return a;
}
 
void printPath(vector<int> adj[], int a, int b, int n)
{
    // stores level of every node
    int lvl[n+1];
   
    // stores parent of every node
    int par[n+1];
   
    // running dfs to find parent and level
    // of every node in the tree
    dfs(adj, 1, 0, -1, lvl, par);
     
    // finding the lowest common ancestor
    // of the nodes a and b
    int lca = LCA(a, b, par, lvl);
   
    // stores path between nodes a and b
    vector<int> path;
     
    // traversing the path from a to lca
    while(a != lca)
      path.push_back(a), a = par[a];
 
    path.push_back(a);
 
    vector<int> temp;
     
    // traversing the path from b to lca
    while(b != lca)
      temp.push_back(b), b=par[b];
     
    // reversing the path to get actual path
    reverse(temp.begin(), temp.end());
   
    for(int x : temp)
      path.push_back(x);
   
    // printing the path
    for(int i = 0; i < path.size() - 1; i++)
      cout << path[i] << " -> ";
   
    cout << path[path.size() - 1] << endl;
}
 
// Driver Code
int main()
{  
  /*                          1
  
                        /            \
 
                     2                7
 
               /             \
 
             3                6
 
    /        |        \
 
  4          8          5
   
 */
    // number of nodes in the tree
    int n = 8;
     
    // adjacency list representation of the tree
    vector<int> adj[n+1];
   
    addEdge(adj, 1, 2);
    addEdge(adj, 1, 7);
    addEdge(adj, 2, 3);
    addEdge(adj, 2, 6);
    addEdge(adj, 3, 4);
    addEdge(adj, 3, 8);
    addEdge(adj, 3, 5);
     
    // taking two input nodes
    // between which path is
    // to be printed
    int a = 4, b = 7;
   
    printPath(adj, a, b, n);
    
    return 0;
}

                    

Java

import java.util.*;
 
public class Main {
  public static void main(String[] args)
  {
    /*                          1
 
                          /            \
 
                       2                7
 
                 /             \
 
               3                6
 
      /        |        \
 
    4          8          5
 
   */
    // number of nodes in the tree
    int n = 8;
 
    // adjacency list representation of the tree
    ArrayList<Integer>[] adj = new ArrayList[n + 1];
    for (int i = 0; i <= n; i++) {
      adj[i] = new ArrayList<>();
    }
 
    addEdge(adj, 1, 2);
    addEdge(adj, 1, 7);
    addEdge(adj, 2, 3);
    addEdge(adj, 2, 6);
    addEdge(adj, 3, 4);
    addEdge(adj, 3, 8);
    addEdge(adj, 3, 5);
 
    // taking two input nodes
    // between which path is
    // to be printed
    int a = 4, b = 7;
 
    printPath(adj, a, b, n);
  }
 
  public static void addEdge(ArrayList<Integer>[] adj,
                             int x, int y)
  {
    adj[x].add(y);
    adj[y].add(x);
  }
 
  // running dfs to find level and parent of every node
  public static void dfs(ArrayList<Integer>[] adj,
                         int node, int l, int p,
                         int[] lvl, int[] par)
  {
    lvl[node] = l;
    par[node] = p;
 
    for (int child : adj[node]) {
      if (child != p) {
        dfs(adj, child, l + 1, node, lvl, par);
      }
    }
  }
 
  public static int LCA(int a, int b, int[] par,
                        int[] lvl)
  {
    // if node a is at deeper level than
    // node b
    if (lvl[a] > lvl[b]) {
      int temp = a;
      a = b;
      b = temp;
    }
 
    // finding the difference in levels
    // of node a and b
    int diff = lvl[b] - lvl[a];
 
    // moving b to the level of a
    while (diff != 0) {
      b = par[b];
      diff--;
    }
 
    // means we have found the LCA
    if (a == b) {
      return a;
    }
 
    // finding the LCA
    while (a != b) {
      a = par[a];
      b = par[b];
    }
 
    return a;
  }
 
  public static void printPath(ArrayList<Integer>[] adj,
                               int a, int b, int n)
  {
    // stores level of every node
    int[] lvl = new int[n + 1];
    // stores parent of every node
    int[] par = new int[n + 1];
 
    // running dfs to find parent and level
    // of every node in the tree
    dfs(adj, 1, 0, -1, lvl, par);
 
    // finding the lowest common ancestor
    // of the nodes a and b
    int lca = LCA(a, b, par, lvl);
 
    ArrayList<Integer> path = new ArrayList<>();
 
    // traversing the path from a to lca
    while (a != lca) {
      path.add(a);
      a = par[a];
    }
 
    path.add(a);
 
    ArrayList<Integer> temp = new ArrayList<>();
 
    // traversing the path from b to lca
    while (b != lca) {
      temp.add(b);
      b = par[b];
    }
 
    // reversing the path to get actual path
    Collections.reverse(temp);
 
    path.addAll(temp);
 
    // printing the path
    for (int i = 0; i < path.size() - 1; i++) {
      System.out.print(path.get(i) + " -> ");
    }
 
    System.out.println(path.get(path.size() - 1));
  }
}
 
// This code is contributed by divyansh2212

                    

Python3

from collections import defaultdict
#An utility function to add an edge in the tree
def add_edge(adj, x, y):
    adj[x].append(y)
    adj[y].append(x)
# running dfs to find level and parent of every node
def dfs(adj, node, l, p, lvl, par):
    lvl[node] = l
    par[node] = p
   # if node a is at deeper level than
   # node b
    for child in adj[node]:
        if child != p:
            dfs(adj, child, l + 1, node, lvl, par)
 
def LCA(a, b, par, lvl): 
    if lvl[a] > lvl[b]:
        a, b = b, a
        # finding the difference in levels
   # of node a and b
    diff = lvl[b] - lvl[a]
    while diff != 0:
        b = par[b]
        diff -= 1
    if a == b:
        return a
    while a != b:
        a = par[a]
        b = par[b]
    return a
 
def print_path(adj, a, b, n):
    lvl = [0] * (n + 1)
    par = [0] * (n + 1)
    dfs(adj, 1, 0, -1, lvl, par)
    lca = LCA(a, b, par, lvl)
    path = []
    while a != lca:
        path.append(a)
        a = par[a]
    path.append(a)
    temp = []
    while b != lca:
        temp.append(b)
        b = par[b]
    temp.reverse()
    for x in temp:
        path.append(x)
    print(" -> ".join(map(str, path)))
 
if __name__ == "__main__":
    n = 8
    adj = defaultdict(list)
    add_edge(adj, 1, 2)
    add_edge(adj, 1, 7)
    add_edge(adj, 2, 3)
    add_edge(adj, 2, 6)
    add_edge(adj, 3, 4)
    add_edge(adj, 3, 8)
    add_edge(adj, 3, 5)
    #   taking two input nodes
    # between which path is
    #to be printed
    a, b = 4, 7
    print_path(adj, a, b, n)

                    

Javascript

// Function to add an edge to an adjacency list
function addEdge(adj, x, y) {
  adj[x].push(y);
  adj[y].push(x);
}
 
// Function to perform depth first search (DFS) traversal
// and compute level and parent information for each node
function dfs(adj, node, l, p, lvl, par) {
  lvl[node] = l; // set level of current node
  par[node] = p; // set parent of current node
 
  // Traverse through all adjacent nodes
  for (let i = 0; i < adj[node].length; i++) {
    let child = adj[node][i];
    // If the adjacent node is not the parent of the current node,
    // perform DFS on the adjacent node
    if (child !== p) {
      dfs(adj, child, l + 1, node, lvl, par);
    }
  }
}
 
// Function to find the lowest common ancestor (LCA) of two nodes
function LCA(a, b, par, lvl) {
  // Make sure that node a is at a lower level than node b
  if (lvl[a] > lvl[b]) {
    let temp = a;
    a = b;
    b = temp;
  }
  // Compute the difference in levels between node a and node b
  let diff = lvl[b] - lvl[a];
 
  // Move up the tree from node b to reach the same level as node a
  while (diff !== 0) {
    b = par[b];
    diff--;
  }
 
  // If node a and node b are the same, then they are the LCA
  if (a === b) {
    return a;
  }
 
  // Move up the tree from both nodes until they have the same parent
  while (a !== b) {
    a = par[a];
    b = par[b];
  }
 
  // The parent of the common ancestor is the LCA
  return a;
}
 
// Function to print the path between two nodes in a tree
function printPath(adj, a, b, n) {
  // Initialize arrays to store level and parent information
  let lvl = new Array(n + 1).fill(0);
  let par = new Array(n + 1).fill(0);
 
  // Perform DFS traversal and compute level and parent information
  dfs(adj, 1, 0, -1, lvl, par);
 
  // Find the lowest common ancestor of nodes a and b
  let lca = LCA(a, b, par, lvl);
  // Initialize an array to store the path between nodes a and b
  let path = [];
 
  // Traverse from node a to the LCA and add all nodes to the path
  while (a !== lca) {
    path.push(a);
    a = par[a];
  }
 
  // Add the LCA to the path
  path.push(a);
  // Initialize a temporary array to store the path from node b to the LCA
  let temp = [];
 
  // Traverse from node b to the LCA and add all nodes to the temporary array
  while (b !== lca) {
    temp.push(b);
    b = par[b];
  }
 
  // Reverse the temporary array and add its elements to the path
  temp.reverse();
  path.push(...temp);
 
  // Print the path
  for (let i = 0; i < path.length - 1; i++) {
    process.stdout.write(path[i] + " -> ");
  }
  console.log(path[path.length - 1]);
}
 
let n = 8;
let adj = new Array(n + 1);
 
for (let i = 0; i <= n; i++) {
  adj[i] = [];
}
 
addEdge(adj, 1, 2);
addEdge(adj, 1, 7);
addEdge(adj, 2, 3);
addEdge(adj, 2, 6);
addEdge(adj, 3, 4);
addEdge(adj, 3, 8);
addEdge(adj, 3, 5);
 
let a = 4,
  b = 7;
 
printPath(adj, a, b, n);

                    

C#

using System;
using System.Collections.Generic;
using System.Linq;
 
public class GFG
{
    // An utility function to add an edge in the tree
    static void addEdge(List<int>[] adj, int x, int y)
    {
        adj[x].Add(y);
        adj[y].Add(x);
    }
 
    // running dfs to find level and parent of every node
    static void dfs(List<int>[] adj, int node, int l, int p, int[] lvl, int[] par)
    {
        lvl[node] = l;
        par[node] = p;
 
        foreach (int child in adj[node])
        {
            if (child != p)
                dfs(adj, child, l + 1, node, lvl, par);
        }
    }
 
    static int LCA(int a, int b, int[] par, int[] lvl)
    {
        // if node a is at deeper level than node b
        if (lvl[a] > lvl[b])
            (a, b) = (b, a);
 
        // finding the difference in levels of node a and b
        int diff = lvl[b] - lvl[a];
 
        // moving b to the level of a
        while (diff != 0)
        {
            b = par[b];
            diff--;
        }
 
        // means we have found the LCA
        if (a == b)
            return a;
 
        // finding the LCA
        while (a != b)
            (a, b) = (par[a], par[b]);
 
        return a;
    }
 
    static void printPath(List<int>[] adj, int a, int b, int n)
    {
        // stores level of every node
        int[] lvl = new int[n + 1];
 
        // stores parent of every node
        int[] par = new int[n + 1];
 
        // running dfs to find parent and level
        // of every node in the tree
        dfs(adj, 1, 0, -1, lvl, par);
 
        // finding the lowest common ancestor
        // of the nodes a and b
        int lca = LCA(a, b, par, lvl);
 
        // stores path between nodes a and b
        List<int> path = new List<int>();
 
        // traversing the path from a to lca
        while (a != lca)
        {
            path.Add(a);
            a = par[a];
        }
 
        path.Add(a);
 
        List<int> temp = new List<int>();
 
        // traversing the path from b to lca
        while (b != lca)
        {
            temp.Add(b);
            b = par[b];
        }
 
        // reversing the path to get actual path
        temp.Reverse();
 
        foreach (int x in temp)
            path.Add(x);
 
        // printing the path
        for (int i = 0; i < path.Count() - 1; i++)
            Console.Write(path[i] + " -> ");
 
        Console.WriteLine(path[path.Count() - 1]);
    }
 
    // Driver Code
    static void Main()
{
                    /*          1
  
                          /            \
  
                       2                7
  
                 /             \
  
               3                6
  
      /        |        \
  
    4          8          5
  
   */
        // number of nodes in the tree
        int n = 8;
 
        // adjacency list representation of the tree
        List<int>[] adj = new List<int>[n + 1];
        for (int i = 0; i <= n; i++)
        {
            adj[i] = new List<int>();
        }
 
        addEdge(adj, 1, 2);
        addEdge(adj, 1, 7);
        addEdge(adj, 2, 3);
        addEdge(adj, 2, 6);
        addEdge(adj, 3, 4);
        addEdge(adj, 3, 8);
        addEdge(adj, 3, 5);
 
        // taking two input nodes
        // between which path is
        // to be printed
        int a = 4, b = 7;
 
        printPath(adj, a, b, n);
    }
}

                    

Output
4 -> 3 -> 2 -> 1 -> 7

Time Complexity : O(N) 

Space Complexity : O(N)



Last Updated : 15 Mar, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads