Given an undirected graph having N nodes, the task is to print the nodes having minimum and maximum degree.
Examples:
Input: 1-----2 | | 3-----4 Output: Nodes with maximum degree : 1 2 3 4 Nodes with minimum degree : 1 2 3 4 Every node has a degree of 2. Input: 1 / \ 2 3 / 4 Output: Nodes with maximum degree : 1 2 Nodes with minimum degree : 3 4
Approach: For an undirected graph, the degree of a node is the number of edges incident to it, so the degree of each node can be calculated by counting its frequency in the list of edges. Hence the approach is to use a map to calculate the frequency of every vertex from the edge list and use the map to find the nodes having maximum and minimum degrees.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to print the nodes having // maximum and minimum degree void minMax( int edges[][2], int len, int n) { // Map to store the degrees of every node map< int , int > m; for ( int i = 0; i < len; i++) { // Storing the degree for each node m[edges[i][0]]++; m[edges[i][1]]++; } // maxi and mini variables to store // the maximum and minimum degree int maxi = 0; int mini = n; for ( int i = 1; i <= n; i++) { maxi = max(maxi, m[i]); mini = min(mini, m[i]); } // Printing all the nodes with maximum degree cout << "Nodes with maximum degree : " ; for ( int i = 1; i <= n; i++) { if (m[i] == maxi) cout << i << " " ; } cout << endl; // Printing all the nodes with minimum degree cout << "Nodes with minimum degree : " ; for ( int i = 1; i <= n; i++) { if (m[i] == mini) cout << i << " " ; } } // Driver code int main() { // Count of nodes and edges int n = 4, m = 6; // The edge list int edges[][2] = { { 1, 2 }, { 1, 3 }, { 1, 4 }, { 2, 3 }, { 2, 4 }, { 3, 4 } }; minMax(edges, m, 4); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to print the nodes having // maximum and minimum degree static void minMax( int edges[][], int len, int n) { // Map to store the degrees of every node HashMap<Integer, Integer> m = new HashMap<Integer, Integer>(); for ( int i = 0 ; i < len; i++) { // Storing the degree for each node if (m.containsKey(edges[i][ 0 ])) { m.put(edges[i][ 0 ], m.get(edges[i][ 0 ]) + 1 ); } else { m.put(edges[i][ 0 ], 1 ); } if (m.containsKey(edges[i][ 1 ])) { m.put(edges[i][ 1 ], m.get(edges[i][ 1 ]) + 1 ); } else { m.put(edges[i][ 1 ], 1 ); } } // maxi and mini variables to store // the maximum and minimum degree int maxi = 0 ; int mini = n; for ( int i = 1 ; i <= n; i++) { maxi = Math.max(maxi, m.get(i)); mini = Math.min(mini, m.get(i)); } // Printing all the nodes with maximum degree System.out.print( "Nodes with maximum degree : " ); for ( int i = 1 ; i <= n; i++) { if (m.get(i) == maxi) System.out.print(i + " " ); } System.out.println(); // Printing all the nodes with minimum degree System.out.print( "Nodes with minimum degree : " ); for ( int i = 1 ; i <= n; i++) { if (m.get(i) == mini) System.out.print(i + " " ); } } // Driver code public static void main(String[] args) { // Count of nodes and edges int n = 4 , m = 6 ; // The edge list int edges[][] = {{ 1 , 2 }, { 1 , 3 }, { 1 , 4 }, { 2 , 3 }, { 2 , 4 }, { 3 , 4 }}; minMax(edges, m, 4 ); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation of the approach # Function to print the nodes having # maximum and minimum degree def minMax(edges, leng, n) : # Map to store the degrees of every node m = {}; for i in range (leng) : m[edges[i][ 0 ]] = 0 ; m[edges[i][ 1 ]] = 0 ; for i in range (leng) : # Storing the degree for each node m[edges[i][ 0 ]] + = 1 ; m[edges[i][ 1 ]] + = 1 ; # maxi and mini variables to store # the maximum and minimum degree maxi = 0 ; mini = n; for i in range ( 1 , n + 1 ) : maxi = max (maxi, m[i]); mini = min (mini, m[i]); # Printing all the nodes # with maximum degree print ( "Nodes with maximum degree : " , end = "") for i in range ( 1 , n + 1 ) : if (m[i] = = maxi) : print (i, end = " " ); print () # Printing all the nodes # with minimum degree print ( "Nodes with minimum degree : " , end = "") for i in range ( 1 , n + 1 ) : if (m[i] = = mini) : print (i, end = " " ); # Driver code if __name__ = = "__main__" : # Count of nodes and edges n = 4 ; m = 6 ; # The edge list edges = [[ 1 , 2 ], [ 1 , 3 ], [ 1 , 4 ], [ 2 , 3 ], [ 2 , 4 ], [ 3 , 4 ]]; minMax(edges, m, 4 ); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to print the nodes having // maximum and minimum degree static void minMax( int [,]edges, int len, int n) { // Map to store the degrees of every node Dictionary< int , int > m = new Dictionary< int , int >(); for ( int i = 0; i < len; i++) { // Storing the degree for each node if (m.ContainsKey(edges[i, 0])) { m[edges[i, 0]] = m[edges[i, 0]] + 1; } else { m.Add(edges[i, 0], 1); } if (m.ContainsKey(edges[i, 1])) { m[edges[i, 1]] = m[edges[i, 1]] + 1; } else { m.Add(edges[i, 1], 1); } } // maxi and mini variables to store // the maximum and minimum degree int maxi = 0; int mini = n; for ( int i = 1; i <= n; i++) { maxi = Math.Max(maxi, m[i]); mini = Math.Min(mini, m[i]); } // Printing all the nodes with maximum degree Console.Write( "Nodes with maximum degree : " ); for ( int i = 1; i <= n; i++) { if (m[i] == maxi) Console.Write(i + " " ); } Console.WriteLine(); // Printing all the nodes with minimum degree Console.Write( "Nodes with minimum degree : " ); for ( int i = 1; i <= n; i++) { if (m[i] == mini) Console.Write(i + " " ); } } // Driver code public static void Main(String[] args) { // Count of nodes and edges int m = 6; // The edge list int [,]edges = {{ 1, 2 }, { 1, 3 }, { 1, 4 }, { 2, 3 }, { 2, 4 }, { 3, 4 }}; minMax(edges, m, 4); } } // This code is contributed by 29AjayKumar |
Nodes with maximum degree : 1 2 3 4 Nodes with minimum degree : 1 2 3 4
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer Complete Interview Preparation Course.