# Print nodes having maximum and minimum degrees

Last Updated : 08 Feb, 2023

Given an undirected graph having N nodes, the task is to print the nodes having minimum and maximum degree.
Examples:

```Input:
1-----2
|     |
3-----4
Output:
Nodes with maximum degree : 1 2 3 4
Nodes with minimum degree : 1 2 3 4
Every node has a degree of 2.

Input:
1
/ \
2   3
/
4
Output:
Nodes with maximum degree : 1 2
Nodes with minimum degree : 3 4 ```

Approach: For an undirected graph, the degree of a node is the number of edges incident to it, so the degree of each node can be calculated by counting its frequency in the list of edges. Hence the approach is to use a map to calculate the frequency of every vertex from the edge list and use the map to find the nodes having maximum and minimum degrees.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach` `#include ` `using` `namespace` `std;`   `// Function to print the nodes having` `// maximum and minimum degree` `void` `minMax(``int` `edges[][2], ``int` `len, ``int` `n)` `{`   `    ``// Map to store the degrees of every node` `    ``map<``int``, ``int``> m;`   `    ``for` `(``int` `i = 0; i < len; i++) {`   `        ``// Storing the degree for each node` `        ``m[edges[i][0]]++;` `        ``m[edges[i][1]]++;` `    ``}`   `    ``// maxi and mini variables to store` `    ``// the maximum and minimum degree` `    ``int` `maxi = 0;` `    ``int` `mini = n;`   `    ``for` `(``int` `i = 1; i <= n; i++) {` `        ``maxi = max(maxi, m[i]);` `        ``mini = min(mini, m[i]);` `    ``}`   `    ``// Printing all the nodes with maximum degree` `    ``cout << ``"Nodes with maximum degree : "``;` `    ``for` `(``int` `i = 1; i <= n; i++) {` `        ``if` `(m[i] == maxi)` `            ``cout << i << ``" "``;` `    ``}` `    ``cout << endl;`   `    ``// Printing all the nodes with minimum degree` `    ``cout << ``"Nodes with minimum degree : "``;` `    ``for` `(``int` `i = 1; i <= n; i++) {` `        ``if` `(m[i] == mini)` `            ``cout << i << ``" "``;` `    ``}` `}`   `// Driver code` `int` `main()` `{`   `    ``// Count of nodes and edges` `    ``int` `n = 4, m = 6;`   `    ``// The edge list` `    ``int` `edges[][2] = { { 1, 2 },` `                       ``{ 1, 3 },` `                       ``{ 1, 4 },` `                       ``{ 2, 3 },` `                       ``{ 2, 4 },` `                       ``{ 3, 4 } };`   `    ``minMax(edges, m, 4);`   `    ``return` `0;` `}`

## Java

 `// Java implementation of the approach` `import` `java.util.*;`   `class` `GFG ` `{`   `// Function to print the nodes having` `// maximum and minimum degree` `static` `void` `minMax(``int` `edges[][], ``int` `len, ``int` `n)` `{`   `    ``// Map to store the degrees of every node` `    ``HashMap m = ``new` `HashMap();`   `    ``for` `(``int` `i = ``0``; i < len; i++) ` `    ``{`   `        ``// Storing the degree for each node` `        ``if``(m.containsKey(edges[i][``0``]))` `        ``{` `            ``m.put(edges[i][``0``], m.get(edges[i][``0``]) + ``1``);` `        ``}` `        ``else` `        ``{` `            ``m.put(edges[i][``0``], ``1``);` `        ``}` `        ``if``(m.containsKey(edges[i][``1``]))` `        ``{` `            ``m.put(edges[i][``1``], m.get(edges[i][``1``]) + ``1``);` `        ``}` `        ``else` `        ``{` `            ``m.put(edges[i][``1``], ``1``);` `        ``}` `    ``}`   `    ``// maxi and mini variables to store` `    ``// the maximum and minimum degree` `    ``int` `maxi = ``0``;` `    ``int` `mini = n;`   `    ``for` `(``int` `i = ``1``; i <= n; i++) ` `    ``{` `        ``maxi = Math.max(maxi, m.get(i));` `        ``mini = Math.min(mini, m.get(i));` `    ``}`   `    ``// Printing all the nodes with maximum degree` `    ``System.out.print(``"Nodes with maximum degree : "``);` `    ``for` `(``int` `i = ``1``; i <= n; i++) ` `    ``{` `        ``if` `(m.get(i) == maxi)` `            ``System.out.print(i + ``" "``);` `    ``}` `    ``System.out.println();`   `    ``// Printing all the nodes with minimum degree` `    ``System.out.print(``"Nodes with minimum degree : "``);` `    ``for` `(``int` `i = ``1``; i <= n; i++)` `    ``{` `        ``if` `(m.get(i) == mini)` `            ``System.out.print(i + ``" "``);` `    ``}` `}`   `// Driver code` `public` `static` `void` `main(String[] args)` `{` `    ``// Count of nodes and edges` `    ``int` `n = ``4``, m = ``6``;`   `    ``// The edge list` `    ``int` `edges[][] = {{ ``1``, ``2` `}, { ``1``, ``3` `},` `                     ``{ ``1``, ``4` `}, { ``2``, ``3` `},` `                     ``{ ``2``, ``4` `}, { ``3``, ``4` `}};`   `    ``minMax(edges, m, ``4``);` `}` `}`   `// This code is contributed by PrinciRaj1992`

## Python3

 `# Python3 implementation of the approach`   `# Function to print the nodes having ` `# maximum and minimum degree ` `def` `minMax(edges, leng, n) : `   `    ``# Map to store the degrees of every node ` `    ``m ``=` `{};` `    `  `    ``for` `i ``in` `range``(leng) :` `        ``m[edges[i][``0``]] ``=` `0``;` `        ``m[edges[i][``1``]] ``=` `0``;` `        `  `    ``for` `i ``in` `range``(leng) :` `        `  `        ``# Storing the degree for each node` `        ``m[edges[i][``0``]] ``+``=` `1``;` `        ``m[edges[i][``1``]] ``+``=` `1``; `   `    ``# maxi and mini variables to store ` `    ``# the maximum and minimum degree ` `    ``maxi ``=` `0``; ` `    ``mini ``=` `n; `   `    ``for` `i ``in` `range``(``1``, n ``+` `1``) :` `        ``maxi ``=` `max``(maxi, m[i]); ` `        ``mini ``=` `min``(mini, m[i]); `   `    ``# Printing all the nodes ` `    ``# with maximum degree ` `    ``print``(``"Nodes with maximum degree : "``, ` `                                ``end ``=` `"")` `    `  `    ``for` `i ``in` `range``(``1``, n ``+` `1``) :` `        ``if` `(m[i] ``=``=` `maxi) :` `            ``print``(i, end ``=` `" "``); `   `    ``print``()`   `    ``# Printing all the nodes ` `    ``# with minimum degree ` `    ``print``(``"Nodes with minimum degree : "``, ` `                                ``end ``=` `"")` `    `  `    ``for` `i ``in` `range``(``1``, n ``+` `1``) :` `        ``if` `(m[i] ``=``=` `mini) :` `            ``print``(i, end ``=` `" "``); `   `# Driver code ` `if` `__name__ ``=``=` `"__main__"` `: `   `    ``# Count of nodes and edges ` `    ``n ``=` `4``; m ``=` `6``; `   `    ``# The edge list ` `    ``edges ``=` `[[ ``1``, ``2` `], [ ``1``, ``3` `], ` `             ``[ ``1``, ``4` `], [ ``2``, ``3` `], ` `             ``[ ``2``, ``4` `], [ ``3``, ``4` `]]; `   `    ``minMax(edges, m, ``4``); `   `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach` `using` `System;` `using` `System.Collections.Generic;`   `class` `GFG ` `{`   `// Function to print the nodes having` `// maximum and minimum degree` `static` `void` `minMax(``int` `[,]edges, ``int` `len, ``int` `n)` `{`   `    ``// Map to store the degrees of every node` `    ``Dictionary<``int``, ``int``> m = ``new` `Dictionary<``int``, ``int``>();`   `    ``for` `(``int` `i = 0; i < len; i++) ` `    ``{`   `        ``// Storing the degree for each node` `        ``if``(m.ContainsKey(edges[i, 0]))` `        ``{` `            ``m[edges[i, 0]] = m[edges[i, 0]] + 1;` `        ``}` `        ``else` `        ``{` `            ``m.Add(edges[i, 0], 1);` `        ``}` `        ``if``(m.ContainsKey(edges[i, 1]))` `        ``{` `            ``m[edges[i, 1]] = m[edges[i, 1]] + 1;` `        ``}` `        ``else` `        ``{` `            ``m.Add(edges[i, 1], 1);` `        ``}` `    ``}`   `    ``// maxi and mini variables to store` `    ``// the maximum and minimum degree` `    ``int` `maxi = 0;` `    ``int` `mini = n;`   `    ``for` `(``int` `i = 1; i <= n; i++) ` `    ``{` `        ``maxi = Math.Max(maxi, m[i]);` `        ``mini = Math.Min(mini, m[i]);` `    ``}`   `    ``// Printing all the nodes with maximum degree` `    ``Console.Write(``"Nodes with maximum degree : "``);` `    ``for` `(``int` `i = 1; i <= n; i++) ` `    ``{` `        ``if` `(m[i] == maxi)` `            ``Console.Write(i + ``" "``);` `    ``}` `    ``Console.WriteLine();`   `    ``// Printing all the nodes with minimum degree` `    ``Console.Write(``"Nodes with minimum degree : "``);` `    ``for` `(``int` `i = 1; i <= n; i++)` `    ``{` `        ``if` `(m[i] == mini)` `            ``Console.Write(i + ``" "``);` `    ``}` `}`   `// Driver code` `public` `static` `void` `Main(String[] args)` `{` `    ``// Count of nodes and edges` `    ``int` `m = 6;`   `    ``// The edge list` `    ``int` `[,]edges = {{ 1, 2 }, { 1, 3 },` `                    ``{ 1, 4 }, { 2, 3 },` `                    ``{ 2, 4 }, { 3, 4 }};`   `    ``minMax(edges, m, 4);` `}` `}`   `// This code is contributed by 29AjayKumar`

## Javascript

 `// JavaScript implementation of the approach`   `// Function to print the nodes having` `// maximum and minimum degree` `function` `minMax(edges, len, n) {` `    ``// Map to store the degrees of every node` `    ``let m = ``new` `Map();`   `    ``for` `(let i = 0; i < len; i++) {` `        ``// Storing the degree for each node` `        ``if` `(m.has(edges[i][0])) {` `            ``m.set(edges[i][0], m.get(edges[i][0]) + 1);` `        ``} ``else` `{` `            ``m.set(edges[i][0], 1);` `        ``}` `        ``if` `(m.has(edges[i][1])) {` `            ``m.set(edges[i][1], m.get(edges[i][1]) + 1);` `        ``} ``else` `{` `            ``m.set(edges[i][1], 1);` `        ``}` `    ``}`   `    ``// maxi and mini variables to store` `    ``// the maximum and minimum degree` `    ``let maxi = 0;` `    ``let mini = n;`   `    ``for` `(let i = 1; i <= n; i++) {` `        ``maxi = Math.max(maxi, m.get(i));` `        ``mini = Math.min(mini, m.get(i));` `    ``}`   `    ``// Printing all the nodes with maximum degree` `    ``console.log(``"Nodes with maximum degree : "``, end = ``" "``);` `    ``for` `(let i = 1; i <= n; i++) {` `        ``if` `(m.get(i) === maxi) {` `            ``console.log(i + ``" "``);` `        ``}` `    ``}` `    ``console.log();`   `    ``// Printing all the nodes with minimum degree` `    ``console.log(``"Nodes with minimum degree : "``, end = ``" "``);` `    ``for` `(let i = 1; i <= n; i++) {` `        ``if` `(m.get(i) === mini) {` `            ``console.log(i + ``" "``);` `        ``}` `    ``}` `}`   `// Driver code` `let n = 4, m = 6;`   `// The edge list` `let edges = [` `    ``[1, 2],` `    ``[1, 3],` `    ``[1, 4],` `    ``[2, 3],` `    ``[2, 4],` `    ``[3, 4]` `];`   `minMax(edges, m, 4);`

Output:

```Nodes with maximum degree : 1 2 3 4
Nodes with minimum degree : 1 2 3 4```

Time Complexity: O(M*logN + N).
Auxiliary Space: O(N).