Print BST keys in the given range

Given two values k1 and k2 (where k1 < k2) and a root pointer to a Binary Search Tree. Print all the keys of tree in range k1 to k2. i.e. print all x such that k1<=x<=k2 and x is a key of given BST. Print all the keys in increasing order.

For example, if k1 = 10 and k2 = 22, then your function should print 12, 20 and 22.



The idea is to use the inorder traversal, as inorder traversal of a BST gives the keys in sorted order.

Algorithm:
1) If value of root’s key is greater than k1, then recursively call in left subtree.
2) If value of root’s key is in range, then print the root’s key.
3) If value of root’s key is smaller than k2, then recursively call in right subtree.

Implementation:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print BST in given range
#include<bits/stdc++.h>
using namespace std; 
  
/* A tree node structure */
class node 
    public:
    int data; 
    node *left; 
    node *right; 
}; 
  
/* The functions prints all the keys
which in the given range [k1..k2]. 
    The function assumes than k1 < k2 */
void Print(node *root, int k1, int k2) 
    /* base case */
    if ( NULL == root ) 
        return
      
    /* Since the desired o/p is sorted, 
        recurse for left subtree first 
        If root->data is greater than k1, 
        then only we can get o/p keys 
        in left subtree */
    if ( k1 < root->data ) 
        Print(root->left, k1, k2); 
      
    /* if root's data lies in range, 
    then prints root's data */
    if ( k1 <= root->data && k2 >= root->data ) 
        cout<<root->data<<" "
      
    /* If root->data is smaller than k2,
        then only we can get o/p keys 
        in right subtree */
    if ( k2 > root->data ) 
        Print(root->right, k1, k2); 
  
/* Utility function to create a new Binary Tree node */
node* newNode(int data) 
    node *temp = new node(); 
    temp->data = data; 
    temp->left = NULL; 
    temp->right = NULL; 
      
    return temp; 
  
/* Driver code */
int main() 
    node *root = new node(); 
    int k1 = 10, k2 = 25; 
      
    /* Constructing tree given
    in the above figure */
    root = newNode(20); 
    root->left = newNode(8); 
    root->right = newNode(22); 
    root->left->left = newNode(4); 
    root->left->right = newNode(12); 
      
    Print(root, k1, k2); 
    return 0; 
  
// This code is contributed by rathbhupendra

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

#include<stdio.h>
  
/* A tree node structure */
struct node
{
  int data;
  struct node *left;
  struct node *right;
};
  
/* The functions prints all the keys which in the given range [k1..k2].
    The function assumes than k1 < k2 */
void Print(struct node *root, int k1, int k2)
{
   /* base case */
   if ( NULL == root )
      return;
  
   /* Since the desired o/p is sorted, recurse for left subtree first
      If root->data is greater than k1, then only we can get o/p keys
      in left subtree */
   if ( k1 < root->data )
     Print(root->left, k1, k2);
  
   /* if root's data lies in range, then prints root's data */
   if ( k1 <= root->data && k2 >= root->data )
     printf("%d ", root->data );
  
  /* If root->data is smaller than k2, then only we can get o/p keys
      in right subtree */
   if ( k2 > root->data )
     Print(root->right, k1, k2);
}
  
/* Utility function to create a new Binary Tree node */
struct node* newNode(int data)
{
  struct node *temp = new struct node;
  temp->data = data;
  temp->left = NULL;
  temp->right = NULL;
  
  return temp;
}
  
/* Driver function to test above functions */
int main()
{
  struct node *root = new struct node;
  int k1 = 10, k2 = 25;
  
  /* Constructing tree given in the above figure */
  root = newNode(20);
  root->left = newNode(8);
  root->right = newNode(22);
  root->left->left = newNode(4);
  root->left->right = newNode(12);
  
  Print(root, k1, k2);
  
  getchar();
  return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print BST in given range
  
// A binary tree node
class Node {
  
    int data;
    Node left, right;
  
    Node(int d) {
        data = d;
        left = right = null;
    }
}
  
class BinaryTree {
      
    static Node root;
      
    /* The functions prints all the keys which in the given range [k1..k2].
     The function assumes than k1 < k2 */
    void Print(Node node, int k1, int k2) {
          
        /* base case */
        if (node == null) {
            return;
        }
  
        /* Since the desired o/p is sorted, recurse for left subtree first
         If root->data is greater than k1, then only we can get o/p keys
         in left subtree */
        if (k1 < node.data) {
            Print(node.left, k1, k2);
        }
  
        /* if root's data lies in range, then prints root's data */
        if (k1 <= node.data && k2 >= node.data) {
            System.out.print(node.data + " ");
        }
  
        /* If root->data is smaller than k2, then only we can get o/p keys
         in right subtree */
        if (k2 > node.data) {
            Print(node.right, k1, k2);
        }
    }
      
  
    public static void main(String[] args) {
        BinaryTree tree = new BinaryTree();
        int k1 = 10, k2 = 25;
        tree.root = new Node(20);
        tree.root.left = new Node(8);
        tree.root.right = new Node(22);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(12);
  
        tree.Print(root, k1, k2);
    }
}
  
// This code has been contributed by Mayank Jaiswal

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find BST keys in given range
  
# A binary tree node
class Node:
  
    # Constructor to create a new node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
  
# The function prints all the keys in the gicven range
# [k1..k2]. Assumes that k1 < k2 
def Print(root, k1, k2):
      
    # Base Case
    if root is None:
        return 
  
    # Since the desired o/p is sorted, recurse for left
    # subtree first. If root.data is greater than k1, then
    # only we can get o/p keys in left subtree
    if k1 < root.data :
        Print(root.left, k1, k2)
  
    # If root's data lies in range, then prints root's data
    if k1 <= root.data and k2 >= root.data:
        print root.data,
  
    # If root.data is smaller than k2, then only we can get
    # o/p keys in right subtree
    if k2 > root.data:
        Print(root.right, k1, k2)
  
# Driver function to test above function
k1 = 10 ; k2 = 25 ;
root = Node(20)
root.left = Node(8)
root.right = Node(22)
root.left.left = Node(4)
root.left.right = Node(12)
  
Print(root, k1, k2)
  
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

using System;
  
// C# program to print BST in given range 
  
// A binary tree node 
public class Node
{
  
    public int data;
    public Node left, right;
  
    public Node(int d)
    {
        data = d;
        left = right = null;
    }
}
  
public class BinaryTree
{
  
    public static Node root;
  
    /* The functions prints all the keys which in the given range [k1..k2]. 
     The function assumes than k1 < k2 */
    public virtual void Print(Node node, int k1, int k2)
    {
  
        /* base case */
        if (node == null)
        {
            return;
        }
  
        /* Since the desired o/p is sorted, recurse for left subtree first 
         If root->data is greater than k1, then only we can get o/p keys 
         in left subtree */
        if (k1 < node.data)
        {
            Print(node.left, k1, k2);
        }
  
        /* if root's data lies in range, then prints root's data */
        if (k1 <= node.data && k2 >= node.data)
        {
            Console.Write(node.data + " ");
        }
  
        /* If root->data is smaller than k2, then only we can get o/p keys 
         in right subtree */
        if (k2 > node.data)
        {
            Print(node.right, k1, k2);
        }
    }
  
  
    public static void Main(string[] args)
    {
        BinaryTree tree = new BinaryTree();
        int k1 = 10, k2 = 25;
        BinaryTree.root = new Node(20);
        BinaryTree.root.left = new Node(8);
        BinaryTree.root.right = new Node(22);
        BinaryTree.root.left.left = new Node(4);
        BinaryTree.root.left.right = new Node(12);
  
        tree.Print(root, k1, k2);
    }
}
  
  // This code is contributed by Shrikant13

chevron_right



Output:

12 20 22

Time Complexity: O(n) where n is the total number of keys in tree.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : shrikanth13, rathbhupendra