Open In App

Print all internal nodes of a Binary tree

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Share
Report issue
Report

Given a Binary tree, the task is to print all the internal nodes in a tree. 
An internal node is a node which carries at least one child or in other words, an internal node is not a leaf node. Here we intend to print all such internal nodes in level order. Consider the following Binary Tree:
 

Input: 
 

Output: 15 10 20

 

The way to solve this involves a BFS of the tree. The algorithm is as follows: 
 

  • Do a level order traversal by pushing nodes in the queue one by one.
  • Pop the elements from the queue one by one and keep a track of following cases: 
    1. The node has a left child only.
    2. The node has a right child only.
    3. The node has both left and right child.
    4. The node has no children at all.
  • Except for case 4, print the data in the node for all the other 3 cases.

Below is the implementation of the above approach:
 

C++




// C++ program to print all internal
// nodes in tree
#include <bits/stdc++.h>
using namespace std;
 
// A node in the Binary tree
struct Node {
    int data;
    Node *left, *right;
    Node(int data)
    {
       left = right = NULL;
       this->data = data;
    }
};
 
// Function to print all internal nodes
// in level order from left to right
void printInternalNodes(Node* root)
{
    // Using a queue for a level order traversal
    queue<Node*> q;
    q.push(root);
    while (!q.empty()) {
 
        // Check and pop the element in
        // the front of the queue
        Node* curr = q.front();
        q.pop();
 
        // The variable flag keeps track of
        // whether a node is an internal node
        bool isInternal = 0;
 
        // The node has a left child
        if (curr->left) {
            isInternal = 1;
            q.push(curr->left);
        }
 
        // The node has a right child
        if (curr->right) {
            isInternal = 1;
            q.push(curr->right);
        }
 
        // In case the node has either a left
        // or right child or both print the data
        if (isInternal)
            cout << curr->data << " ";
    }
}
 
// Driver program to build a sample tree
int main()
{
    Node* root = new Node(1);
    root->left = new Node(2);
    root->right = new Node(3);
    root->left->left = new Node(4);
    root->right->left = new Node(5);
    root->right->right = new Node(6);
    root->right->right->right = new Node(10);
    root->right->right->left = new Node(7);
    root->right->left->left = new Node(8);
    root->right->left->right = new Node(9);
 
    // A call to the function
    printInternalNodes(root);
 
    return 0;
}


Java




// Java program to print all internal
// nodes in tree
import java.util.*;
class GfG
{
 
// A node in the Binary tree
static class Node
{
    int data;
    Node left, right;
    Node(int data)
    {
        left = right = null;
        this.data = data;
    }
}
 
// Function to print all internal nodes
// in level order from left to right
static void printInternalNodes(Node root)
{
    // Using a queue for a level order traversal
    Queue<Node> q = new LinkedList<Node>();
    q.add(root);
    while (!q.isEmpty())
    {
 
        // Check and pop the element in
        // the front of the queue
        Node curr = q.peek();
        q.remove();
 
        // The variable flag keeps track of
        // whether a node is an internal node
        boolean isInternal = false;
 
        // The node has a left child
        if (curr.left != null)
        {
            isInternal = true;
            q.add(curr.left);
        }
 
        // The node has a right child
        if (curr.right != null)
        {
            isInternal = true;
            q.add(curr.right);
        }
 
        // In case the node has either a left
        // or right child or both print the data
        if (isInternal == true)
            System.out.print(curr.data + " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    Node root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.right.left = new Node(5);
    root.right.right = new Node(6);
    root.right.right.right = new Node(10);
    root.right.right.left = new Node(7);
    root.right.left.left = new Node(8);
    root.right.left.right = new Node(9);
 
    // A call to the function
    printInternalNodes(root);
}
}
 
// This code is contributed by
// Prerna Saini.


Python3




# Python3 program to print all internal
# nodes in tree
 
# A node in the Binary tree
class new_Node:
     
    # Constructor to create a new_Node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
     
# Function to print all internal nodes
# in level order from left to right
def printInternalNodes(root):
     
    # Using a queue for a level order traversal
    q = []
    q.append(root)
    while (len(q)):
         
        # Check and pop the element in
        # the front of the queue
        curr = q[0]
        q.pop(0)
         
        # The variable flag keeps track of
        # whether a node is an internal node
        isInternal = 0
         
        # The node has a left child
        if (curr.left):
            isInternal = 1
            q.append(curr.left)
         
        # The node has a right child
        if (curr.right):
            isInternal = 1
            q.append(curr.right)
         
        # In case the node has either a left
        # or right child or both print the data
        if (isInternal):
            print(curr.data, end = " ")
     
# Driver Code
root = new_Node(1)
root.left = new_Node(2)
root.right = new_Node(3)
root.left.left = new_Node(4)
root.right.left = new_Node(5)
root.right.right = new_Node(6)
root.right.right.right = new_Node(10)
root.right.right.left = new_Node(7)
root.right.left.left = new_Node(8)
root.right.left.right = new_Node(9)
 
# A call to the function
printInternalNodes(root)
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# program to print all internal
// nodes in tree
using System;
using System.Collections.Generic;
 
class GFG
{
 
// A node in the Binary tree
public class Node
{
    public int data;
    public Node left, right;
    public Node(int data)
    {
        left = right = null;
        this.data = data;
    }
}
 
// Function to print all internal nodes
// in level order from left to right
static void printInternalNodes(Node root)
{
    // Using a queue for a level order traversal
    Queue<Node> q = new Queue<Node>();
    q.Enqueue(root);
    while (q.Count != 0)
    {
 
        // Check and pop the element in
        // the front of the queue
        Node curr = q.Peek();
        q.Dequeue();
 
        // The variable flag keeps track of
        // whether a node is an internal node
        Boolean isInternal = false;
 
        // The node has a left child
        if (curr.left != null)
        {
            isInternal = true;
            q.Enqueue(curr.left);
        }
 
        // The node has a right child
        if (curr.right != null)
        {
            isInternal = true;
            q.Enqueue(curr.right);
        }
 
        // In case the node has either a left
        // or right child or both print the data
        if (isInternal == true)
            Console.Write(curr.data + " ");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    Node root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.right.left = new Node(5);
    root.right.right = new Node(6);
    root.right.right.right = new Node(10);
    root.right.right.left = new Node(7);
    root.right.left.left = new Node(8);
    root.right.left.right = new Node(9);
 
    // A call to the function
    printInternalNodes(root);
}
}
 
// This code contributed by Rajput-Ji


Javascript




<script>
 
    // JavaScript program to print all internal nodes in tree
     
    // A node in the Binary tree
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
 
    // Function to print all internal nodes
    // in level order from left to right
    function printInternalNodes(root)
    {
        // Using a queue for a level order traversal
        let q = [];
        q.push(root);
        while (q.length > 0)
        {
 
            // Check and pop the element in
            // the front of the queue
            let curr = q[0];
            q.shift();
 
            // The variable flag keeps track of
            // whether a node is an internal node
            let isInternal = false;
 
            // The node has a left child
            if (curr.left != null)
            {
                isInternal = true;
                q.push(curr.left);
            }
 
            // The node has a right child
            if (curr.right != null)
            {
                isInternal = true;
                q.push(curr.right);
            }
 
            // In case the node has either a left
            // or right child or both print the data
            if (isInternal == true)
                document.write(curr.data + " ");
        }
    }
     
    let root = new Node(1);
    root.left = new Node(2);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.right.left = new Node(5);
    root.right.right = new Node(6);
    root.right.right.right = new Node(10);
    root.right.right.left = new Node(7);
    root.right.left.left = new Node(8);
    root.right.left.right = new Node(9);
   
    // A call to the function
    printInternalNodes(root);
 
</script>


Output: 

1 2 3 5 6

 



Last Updated : 28 Jun, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads