Print all distinct circular strings of length M in lexicographical order
Given a string and an integer M, print all distinct circular strings of length M in lexicographical order.
Examples:
Input: str = “baaaa”, M = 3
Output: aaa aab aba baa
All possible circular substrings of length 3 are “baa” “aaa” “aaa” “aab” “aba”
Out of the 6, 4 are distinct, and the lexicographical order is aaa aab aba baaInput: str = “saurav”, M = 4
Output: aura avsa ravs saur urav vsau
All possible circular substrings of length 4 are saur aura urav ravs avsa vsau.
All the substrings are distinct, the lexicographical order is aura avsa ravs saur urav vsau.
Approach: The substr function is used to solve the problem. Append the string to itself at first. Iterate over the length of the string to generate all possible substrings of length M. Set is used in C++ to store all the distinct substrings of length 4, set by default stores all its elements in lexicographical order. Once all the strings are generated, print the elements in the set from the beginning.
Below is the implementation of the above approach:
C++
// C++ program to print all // distinct circular strings // of length M in lexicographical order #include <bits/stdc++.h> using namespace std; // Function to print all the distinct substrings // in lexicographical order void printStrings(string s, int l, int m) { // stores all the distinct substrings set<string> c; // Append the string to self s = s + s; // Iterate over the length to generate // all substrings of length m for ( int i = 0; i < l; i++) { // insert the substring of length m // in the set c.insert(s.substr(i, m)); } // prints all the distinct circular // substrings of length m while (!c.empty()) { // Prints the substring cout << *c.begin() << " " ; // erases the beginning element after // printing c.erase(c.begin()); } } // Driver code int main() { string str = "saurav" ; int N = str.length(); int M = 4; printStrings(str, N, M); return 0; } |
Java
// Java program to print all // distinct circular strings // of length M in lexicographical order import java.util.*; class GFG { // Function to print all the distinct substrings // in lexicographical order static void printStrings(String s, int l, int m) { // stores all the distinct substrings Set<String> c = new LinkedHashSet<>(); // Append the string to self s = s + s; // Iterate over the length to generate // all substrings of length m for ( int i = 0 ; i < l; i++) { // insert the substring of length m // in the set c.add(s.substring(i, i+m)); } // prints all the distinct circular // substrings of length m Iterator itr = c.iterator(); while (itr.hasNext()) { // Prints the substring String a =(String) itr.next(); System.out.print(a+ " " ); } c.clear(); } // Driver code public static void main(String[] args) { String str = "saurav" ; int N = str.length(); int M = 4 ; printStrings(str, N, M); } } // This code contributed by Rajput-Ji |
Python3
# Python program to print all # distinct circular strings # of length M in lexicographical order # Function to print all the distinct substrings # in lexicographical order def printStrings(s, l, m): # stores all the distinct substrings c = set () # Append the string to self s = s + s # Iterate over the length to generate # all substrings of length m for i in range (l): # insert the substring of length m # in the set c.add(s[i:i + m]) # prints all the distinct circular # substrings of length m for i in c: # Prints the substring print (i, end = " " ) # Driver code if __name__ = = "__main__" : string = "saurav" N = len (string) M = 4 printStrings(string, N, M) # This code is contributed by # sanjeev2552 |
C#
// C# program to print all // distinct circular strings // of length M in lexicographical order using System; using System.Collections.Generic; class GFG { // Function to print all the distinct substrings // in lexicographical order static void printStrings(String s, int l, int m) { // stores all the distinct substrings HashSet< string > c = new HashSet< string >(); // Append the string to self s = s + s; // Iterate over the length to generate // all substrings of length m for ( int i = 0; i < l; i++) { // insert the substring of length m // in the set c.Add(s.Substring(i, m)); } // prints all the distinct circular // substrings of length m foreach ( string i in c) { string a = ( string )i; Console.Write(a + " " ); } c.Clear(); } // Driver code public static void Main(String[] args) { String str = "saurav" ; int N = str.Length; int M = 4; printStrings(str, N, M); } } // This code contributed by // sanjeev2552 |
Javascript
<script> // Javascript program to print all // distinct circular strings // of length M in lexicographical order // Function to print all the distinct substrings // in lexicographical order function printStrings(s, l, m) { // Stores all the distinct substrings var c = new Set(); // Append the string to self s = s + s; // Iterate over the length to generate // all substrings of length m for ( var i = 0; i < l; i++) { // Insert the substring of length m // in the set c.add(s.substring(i, i + m)); } // Prints all the distinct circular // substrings of length m while (c.size != 0) { var tmp = [...c].sort()[0]; // Prints the substring document.write( tmp + " " ); // Erases the beginning element after // printing c. delete (tmp); } } // Driver code var str = "saurav" ; var N = str.length; var M = 4; printStrings(str, N, M); // This code is contributed by itsok </script> |
aura avsa ravs saur urav vsau
Time Complexity: O(N*M), where N is the length of the string.
Auxiliary Space: O(N*M)
Please Login to comment...