Related Articles

Related Articles

Print all distinct circular strings of length M in lexicographical order
  • Last Updated : 11 Sep, 2019

Given a string and an integer M, print all distinct circular strings of length M in lexicographical order.

Examples:

Input: str = “baaaa”, M = 3
Output: aaa aab aba baa
All possible circular substrings of length 3 are “baa” “aaa” “aaa” “aab” “aba”
Out of the 6, 4 are distinct, and the lexicographical order is aaa aab aba baa

Input: str = “saurav”, M = 3
Output: aura avsa ravs saur urav vsau
All possible circular substrings of length 4 are saur aura urav ravs avsa vsau.
All the substrings are distinct, the lexicographical order is aura avsa ravs saur urav vsau.

Approach: The substr function is used to solve the problem. Append the string to itself at first. Iterate over the length of the string to generate all possible substrings of length M. Set is used in C++ to store all the distinct substrings of length 4, set by default stores all its element in lexicographical order. Once all the strings are generated, print the elements in the set from the beginning.



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print all
// distinct circular strings
// of length M in lexicographical order
#include <bits/stdc++.h>
using namespace std;
  
// Function to print all the distinct substrings
// in lexicographical order
void printStrings(string s, int l, int m)
{
    // stores all the distinct substrings
    set<string> c;
  
    // Append the string to self
    s = s + s;
  
    // Iterate over the length to generate
    // all substrings of length m
    for (int i = 0; i < l; i++) {
  
        // insert the substring of length m
        // in the set
        c.insert(s.substr(i, m));
    }
  
    // prints all the distinct circular
    // substrings  of length m
    while (!c.empty()) {
  
        // Prints the substring
        cout << *c.begin() << " ";
  
        // erases the beginning element after
        // printing
        c.erase(c.begin());
    }
}
  
// Driver code
int main()
{
    string str = "saurav";
    int N = str.length();
    int M = 4;
  
    printStrings(str, N, M);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print all
// distinct circular strings
// of length M in lexicographical order
import java.util.*;
  
class GFG 
{
  
// Function to print all the distinct substrings
// in lexicographical order
static void printStrings(String s, int l, int m)
{
    // stores all the distinct substrings
    Set<String> c = new LinkedHashSet<>();
  
    // Append the string to self
    s = s + s;
  
    // Iterate over the length to generate
    // all substrings of length m
    for (int i = 0; i < l; i++) 
    {
  
        // insert the substring of length m
        // in the set
            c.add(s.substring(i, i+m));
    }
  
    // prints all the distinct circular
    // substrings of length m
    Iterator itr = c.iterator();
    while (itr.hasNext()) 
    {
  
        // Prints the substring
        String a =(String) itr.next();
        System.out.print(a+" ");
          
    }
    c.clear();
}
  
// Driver code
public static void main(String[] args) 
{
    String str = "saurav";
    int N = str.length();
    int M = 4;
  
    printStrings(str, N, M);
}
}
  
// This code contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to print all
# distinct circular strings
# of length M in lexicographical order
  
# Function to print all the distinct substrings
# in lexicographical order
def printStrings(s, l, m):
  
    # stores all the distinct substrings
    c = set()
  
    # Append the string to self
    s = s+s
  
    # Iterate over the length to generate
    # all substrings of length m
    for i in range(l):
  
        # insert the substring of length m
        # in the set
        c.add(s[i:i+m])
  
    # prints all the distinct circular
    # substrings of length m
    for i in c:
  
        # Prints the substring
        print(i, end=" ")
  
  
# Driver code
if __name__ == "__main__":
  
    string = "saurav"
    N = len(string)
    M = 4
  
    printStrings(string, N, M)
  
# This code is contributed by
# sanjeev2552

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print all 
// distinct circular strings 
// of length M in lexicographical order 
using System;
using System.Collections.Generic;
  
class GFG
{
    // Function to print all the distinct substrings 
    // in lexicographical order 
    static void printStrings(String s, int l, int m)
    {
        // stores all the distinct substrings 
        HashSet<string> c = new HashSet<string>();
  
        // Append the string to self 
        s = s + s;
  
        // Iterate over the length to generate 
        // all substrings of length m 
        for (int i = 0; i < l; i++)
        {
            // insert the substring of length m 
            // in the set 
            c.Add(s.Substring(i, m));
        }
  
        // prints all the distinct circular 
        // substrings of length m 
        foreach (string i in c)
        {
            string a = (string)i;
            Console.Write(a + " ");
        }
        c.Clear();
    }
  
    // Driver code 
    public static void Main(String[] args)
    {
        String str = "saurav";
        int N = str.Length;
        int M = 4;
  
        printStrings(str, N, M);
    }
}
  
// This code contributed by
// sanjeev2552

chevron_right


Output:

aura avsa ravs saur urav vsau

Time Complexity: O(N*M), where N is the length of the string.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :