Given three integers N, A, and B. A person is standing at 0-th coordinate and moves A steps to the right in the first step, B steps to the left at the second step, and so on. The task is to find out at which coordinate he will be after N steps.
Examples:
Input: N = 3, A = 5 and B = 2
Output: 8
5 to the right, 2 to the left and 5 to the right, hence the person will end at 8.
Input: N = 5, A = 1 and B = 10
Output: -17
Approach: Since the person takes the odd number step to right and even the number of steps to the left, we have to find out the number difference in steps in either direction. Hence, the formula obtained will be thus:
[((n+1)/2)*a - (n/2)*b]
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int lastCoordinate( int n, int a, int b)
{
return ((n + 1) / 2) * a - (n / 2) * b;
}
int main()
{
int n = 3, a = 5, b = 2;
cout << lastCoordinate(n, a, b);
return 0;
}
|
Java
import java.util.*;
class solution
{
static int lastCoordinate( int n, int a, int b)
{
return ((n + 1 ) / 2 ) * a - (n / 2 ) * b;
}
public static void main(String args[])
{
int n = 3 , a = 5 , b = 2 ;
System.out.println(lastCoordinate(n, a, b));
}
}
|
Python
def lastCoordinate(n, a, b):
return (((n + 1 ) / / 2 ) *
a - (n / / 2 ) * b)
n = 3
a = 5
b = 2
print (lastCoordinate(n, a, b))
|
C#
using System;
class GFG
{
public static int lastCoordinate( int n,
int a, int b)
{
return ((n + 1) / 2) * a - (n / 2) * b;
}
public static void Main( string [] args)
{
int n = 3, a = 5, b = 2;
Console.WriteLine(lastCoordinate(n, a, b));
}
}
|
PHP
<?php
function lastCoordinate( $n , $a , $b )
{
return (( $n + 1) / 2) * $a -
(int)( $n / 2) * $b ;
}
$n = 3; $a = 5; $b = 2;
echo lastCoordinate( $n , $a , $b );
?>
|
Javascript
<script>
function lastCoordinate(n, a, b)
{
return (parseInt(n + 1) / 2) * a -
parseInt(n / 2) * b;
}
let n = 3, a = 5, b = 2;
document.write(lastCoordinate(n, a, b));
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)