Permutation of first N positive integers such that prime numbers are at prime indices
Given an integer N, the task is to find the number of permutations of first N positive integers such that prime numbers are at prime indices (for 1-based indexing).
Note: Since, the number of ways may be very large, return the answer modulo 109 + 7.
Examples:
Input: N = 3
Output: 2
Explanation:
Possible permutation of first 3 positive integers, such that prime numbers are at prime indices are: {1, 2, 3}, {1, 3, 2}
Input: N = 5
Output: 12
Explanation:
Some of the possible permutation of first 5 positive integers, such that prime numbers are at prime indices are: {1, 2, 3, 4}, {1, 3, 2, 4}, {4, 2, 3, 1}, {4, 3, 2, 1}
Approach: There are K number of primes from 1 to N and there is exactly K number of prime indexes from index 1 to N. So the number of permutations for prime numbers is K!. Similarly, the number of permutations for non-prime numbers is (N-K)!. So the total number of permutations is K!*(N-K)!
For example:
Given test case: [1,2,3,4,5]. 2, 3 and 5 are fixed on prime index slots, we can only swap them around. There are 3 x 2 x 1 = 3! ways [[2,3,5], [2,5,3], [3,2,5], [3,5,2], [5,2,3], [5,3,2]], For Non-prime numbers - {1,4} [[1,4], [4,1]] So the total is 3!*2!
Below is the implementation of the above approach:
C++
// C++ implementation to find the // permutation of first N positive // integers such that prime numbers // are at the prime indices #define mod 1000000007 #include<bits/stdc++.h> using namespace std; int fact( int n) { int ans = 1; while (n > 0) { ans = ans * n; n--; } return ans; } // Function to check that // a number is prime or not bool isPrime( int n) { if (n <= 1) return false ; // Loop to check that // number is divisible by any // other number or not except 1 for ( int i = 2; i< sqrt (n) + 1; i++) { if (n % i == 0) return false ; else return true ; } } // Function to find the permutations void findPermutations( int n) { int prime = 0; // Loop to find the // number of prime numbers for ( int j = 1; j < n + 1; j++) { if (isPrime(j)) prime += 1; } // Permutation of N // positive integers int W = fact(prime) * fact(n - prime); cout << (W % mod); } // Driver Code int main() { int n = 7; findPermutations(n); } // This code is contributed by Bhupendra_Singh |
Java
// Java implementation to find the // permutation of first N positive // integers such that prime numbers // are at the prime indices import java.io.*; class GFG{ static int mod = 1000000007 ; static int fact( int n) { int ans = 1 ; while (n > 0 ) { ans = ans * n; n--; } return ans; } // Function to check that // a number is prime or not static boolean isPrime( int n) { if (n <= 1 ) return false ; // Loop to check that // number is divisible by any // other number or not except 1 for ( int i = 2 ; i< Math.sqrt(n) + 1 ; i++) { if (n % i == 0 ) return false ; else return true ; } return true ; } // Function to find the permutations static void findPermutations( int n) { int prime = 0 ; // Loop to find the // number of prime numbers for ( int j = 1 ; j < n + 1 ; j++) { if (isPrime(j)) prime += 1 ; } // Permutation of N // positive integers int W = fact(prime) * fact(n - prime); System.out.println(W % mod); } // Driver Code public static void main (String[] args) { int n = 7 ; findPermutations(n); } } // This code is contributed by shubhamsingh10 |
Python3
# Python3 implementation to find the # permutation of first N positive # integers such that prime numbers # are at the prime indices import math # Function to check that # a number is prime or not def isPrime(n): if n < = 1 : return False # Loop to check that # number is divisible by any # other number or not except 1 for i in range ( 2 , int (n * * 0.5 ) + 1 ): if n % i = = 0 : return False else : return True # Constant value for modulo CONST = int (math. pow ( 10 , 9 )) + 7 # Function to find the permutations def findPermutations(n): prime = 0 # Loop to find the # number of prime numbers for j in range ( 1 , n + 1 ): if isPrime(j): prime + = 1 # Permutation of N # positive integers W = math.factorial(prime) * \ math.factorial(n - prime) print (W % CONST) # Driver Code if __name__ = = "__main__" : n = 7 # Function Call findPermutations(n) |
C#
// C# implementation to find the // permutation of first N positive // integers such that prime numbers // are at the prime indices using System; class GFG{ static int mod = 1000000007; static int fact( int n) { int ans = 1; while (n > 0) { ans = ans * n; n--; } return ans; } // Function to check that // a number is prime or not static bool isPrime( int n) { if (n <= 1) return false ; // Loop to check that // number is divisible by any // other number or not except 1 for ( int i = 2; i < Math.Sqrt(n) + 1; i++) { if (n % i == 0) return false ; else return true ; } return true ; } // Function to find the permutations static void findPermutations( int n) { int prime = 0; // Loop to find the // number of prime numbers for ( int j = 1; j < n + 1; j++) { if (isPrime(j)) prime += 1; } // Permutation of N // positive integers int W = fact(prime) * fact(n - prime); Console.Write(W % mod); } // Driver Code public static void Main() { int n = 7; findPermutations(n); } } // This code is contributed by Code_Mech |
Javascript
<script> // JavaScript implementation to find the // permutation of first N positive // integers such that prime numbers // are at the prime indices let mod = 1000000007; function fact(n) { let ans = 1; while (n > 0) { ans = ans * n; n--; } return ans; } // Function to check that // a number is prime or not function isPrime(n) { if (n <= 1) return false ; // Loop to check that // number is divisible by any // other number or not except 1 for (let i = 2; i< Math.sqrt(n) + 1; i++) { if (n % i == 0) return false ; else return true ; } } // Function to find the permutations function findPermutations(n) { let prime = 0; // Loop to find the // number of prime numbers for (let j = 1; j < n + 1; j++) { if (isPrime(j)) prime += 1; } // Permutation of N // positive integers let W = fact(prime) * fact(n - prime); document.write(W % mod); } // Driver Code let n = 7; findPermutations(n); // This code is contributed by Manoj. </script> |
144
Time Complexity: O(n3/2)
Auxiliary Space: O(1)
Please Login to comment...