Perfect power (1, 4, 8, 9, 16, 25, 27, …)

A perfect power is a number that can be expressed as power of another positive integer.

Given a number n, find count of numbers from 1 to n that are of type xy where x >= 1 and y > 1

Examples :

Input : n = 10
Output : 4
1 4 8 and 9 are the numbers that are
of form x ^ y where x > 0 and y > 1

Input : n = 50
Output : 10


A simple solution is to go through all powers of numbers from i = 2 to square root of n.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to count number of numbers from
// 1 to n are of type x^y where x>0 and y>1
#include <bits/stdc++.h>
using namespace std;
  
// For our convenience
#define ll long long
  
// Function that keeps all the odd power
// numbers upto n
int powerNumbers(int n)
{
    // v is going to store all power numbers
    vector<int> v;
    v.push_back(1);
  
    // Traverse through all base numbers and
    // compute all their powers smaller than
    // or equal to n.
    for (ll i = 2; i * i <= n; i++) {
        ll j = i * i;
        v.push_back(j);
        while (j * i <= n) {
            v.push_back(j * i);
            j = j * i;
        }
    }
  
    // Remove all duplicates
    sort(v.begin(), v.end());
    v.erase(unique(v.begin(), v.end()), v.end());
  
    return v.size();
}
  
int main()
{
    cout << powerNumbers(50);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count number of numbers from
// 1 to n are of type x^y where x>0 and y>1
import java.io.*;
import java.util.*;
  
public class GFG {
  
    // Function that keeps all the odd power
    // numbers upto n
    static int powerNumbers(int n)
    {
        // v is going to store all unique 
        // power numbers
        HashSet<Integer> v = new HashSet<Integer>();
        v.add(1);
       
        // Traverse through all base numbers
        // and compute all their powers
        // smaller than or equal to n.
        for (int i = 2; i * i <= n; i++) {
            int j = i * i;
            v.add(j);
            while (j * i <= n) {
                v.add(j * i);
                j = j * i;
            }
        }
        return v.size();
    }
       
    // Driver code
    public static void main(String args[])
    {
        System.out.print(powerNumbers(50));
    }
}
   
// This code is contributed by Manish Shaw
// (manishshaw1)

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to count number 
# of numbers from 1 to n are of
# type x^y where x>0 and y>1
  
# Function that keeps all the odd
# power numbers upto n
def powerNumbers(n):
      
    # v is going to store all
    # unique power numbers
    v = set();
    v.add(1);
  
    # Traverse through all base
    # numbers and compute all
    # their powers smaller than
    # or equal to n.
    for i in range(2, n+1):
        if(i * i <= n):
            j = i * i;
            v.add(j);
            while (j * i <= n):
                v.add(j * i);
                j = j * i;
  
    return len(v);
      
print (powerNumbers(50));
# This code is contributed by 
# Manish Shaw (manishshaw1)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count number of numbers from
// 1 to n are of type x^y where x>0 and y>1
using System;
using System.Collections.Generic;
using System.Linq;
  
class GFG {
      
    // Function that keeps all the odd power
    // numbers upto n
    static int powerNumbers(int n)
    {
        // v is going to store all unique 
        // power numbers
        HashSet<int> v = new HashSet<int>();
        v.Add(1);
      
        // Traverse through all base numbers
        // and compute all their powers
        // smaller than or equal to n.
        for (int i = 2; i * i <= n; i++) {
            int j = i * i;
            v.Add(j);
            while (j * i <= n) {
                v.Add(j * i);
                j = j * i;
            }
        }
        return v.Count;
    }
      
    // Driver code
    public static void Main()
    {
        Console.WriteLine(powerNumbers(50));
    }
}
  
// This code is contributed by Manish Shaw
// (manishshaw1)

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to count number of
// numbers from 1 to n are of type
// x^y where x>0 and y>1
  
// Function that keeps all the 
// odd power numbers upto n
function powerNumbers($n)
{
    // v is going to store 
    // all power numbers
    $v = array();
    array_push($v, 1);
  
    // Traverse through all base 
    // numbers and compute all 
    // their powers smaller than
    // or equal to n.
    for ($i = 2; $i * $i <= $n; $i++) 
    {
        $j = $i * $i;
        array_push($v, $j);
        while ($j * $i <= $n
        {
            array_push($v, $j * $i);
            $j = $j * $i;
        }
    }
  
    // Remove all duplicates
    sort($v);
    $v = array_unique($v);
  
    return count($v);
}
  
// Driver Code
echo (powerNumbers(50));
  
// This code is contributed by 
// Manish Shaw(manishshaw1)
?>

chevron_right


Output:

10

Efficient Solution

We divide output set into subsets.
Even Powers : Simply we need to square root n. The count of even powers smaller than n is square root of n. For example even powers smaller than 25 are (1, 4, 9, 16 and 25).
Odd Powers : We modify above function to consider only odd powers.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to count number of numbers from
// 1 to n are of type x^y where x>0 and y>1
#include <bits/stdc++.h>
using namespace std;
  
// For our convenience
#define ll long long
  
// Function that keeps all the odd power
// numbers upto n
int powerNumbers(int n)
{
    vector<int> v;
    for (ll i = 2; i * i * i <= n; i++) {
        ll j = i * i;
        while (j * i <= n) {
              
            j *= i;
  
            // We need exclude perfect
            // squares.
            ll s = sqrt(j);
            if (s * s != j)
                v.push_back(j);
        }
    }
  
    // sort the vector
    sort(v.begin(), v.end());
    v.erase(unique(v.begin(), v.end()), v.end());
  
    // Return sum of odd and even powers.
    return v.size() + (ll)sqrt(n);
}
  
int main()
{
    cout << powerNumbers(50);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count number 
// of numbers from 1 to n are
// of type x^y where x>0 and y>1
import java.io.*;
import java.util.*;
  
class GFG
    // Function that keeps all 
    // the odd power numbers upto n
    static long powerNumbers(int n)
    {
        HashSet<Long> v = new HashSet<Long>();
        for (long i = 2; i * i * i <= n; i++) 
        {
            long j = i * i;
            while (j * i <= n) 
            {
                j *= i;
      
                // We need exclude 
                // perfect squares.
                long s = (long)Math.sqrt(j);
                if (s * s != j)
                    v.add(j);
            }
        }
        // sort the vector
        // v.Sort();
        // v.erase(unique(v.begin(),
        // v.end()), v.end());
      
        // Return sum of odd 
        // and even powers.
        return v.size() + (long)Math.sqrt(n);
    }
      
    // Driver Code
    public static void main(String args[])
    {
        System.out.print(powerNumbers(50));
    }
}
  
// This code is contributed by 
// Manish Shaw(manishshaw1)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count number 
// of numbers from 1 to n are
// of type x^y where x>0 and y>1
using System;
using System.Collections.Generic;
  
class GFG
    // Function that keeps all 
    // the odd power numbers upto n
    static long powerNumbers(int n)
    {
        HashSet<long> v = new HashSet<long>();
        for (long i = 2; i * i * i <= n; i++) 
        {
            long j = i * i;
            while (j * i <= n) 
            {
                j *= i;
      
                // We need exclude 
                // perfect squares.
                long s = (long)Math.Sqrt(j);
                if (s * s != j)
                    v.Add(j);
            }
        }
        // sort the vector
        //v.Sort();
        //v.erase(unique(v.begin(),
        // v.end()), v.end());
      
        // Return sum of odd 
        // and even powers.
        return v.Count + (long)Math.Sqrt(n);
    }
      
    // Driver Code
    static void Main()
    {
        Console.Write(powerNumbers(50));
    }
}
  
// This code is contributed by 
// Manish Shaw(manishshaw1)

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to count number 
// of numbers from 1 to n are
// of type x^y where x>0 and y>1
  
// Function that keeps all the
// odd power numbers upto n
function powerNumbers($n)
{
    $v = array();
    for ($i = 2; $i * $i * $i <= $n; $i++) 
    {
        $j = $i * $i;
        while ($j * $i <= $n
        {
            $j *= $i;
  
            // We need exclude perfect
            // squares.
            $s = sqrt($j);
            if ($s * $s != $j)
                array_push($v, $j);
        }
    }
  
    // sort the vector
    sort($v);
    $uni = array_unique($v);
    for ($i = 0; $i < count($uni); $i++)
    {
        $key = array_search($uni[$i], $v);
        unset($v[$key]);
    }
  
    // Return sum of odd
    // and even powers.
    return count($v) + 3 + 
           intval(sqrt($n));
}
  
// Driver Code
echo (powerNumbers(50));
  
// This code is contributed by 
// Manish Shaw(manishshaw1)
?>

chevron_right


Output :

10


My Personal Notes arrow_drop_up

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : manishshaw1