# Pair with a given sum in BST | Set 2

Given a binary search tree, and an integer X, the task is to check if there exists a pair of distinct nodes in BST with sum equal to X. If yes then print Yes else print No.

Examples:

```Input: X = 5
5
/   \
3     7
/ \   / \
2   4 6   8
Output: Yes
2 + 3 = 5. Thus, the answer is "Yes"

Input: X = 10
1
\
2
\
3
\
4
\
5
Output: No
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: We have already discussed a hash based approach in this article. The space complexity of this is O(N) where N is the number of nodes in BST.

In this article, we will solve the same problem using a space efficient method by reducing the space complexity to O(H) where H is the height of BST. For that, we will use two pointer technique on BST. Thus, we will maintain a forward and a backward iterator that will iterate the BST in the order of in-order and reverse in-order traversal respectively. Following are the steps to solve the problem:

1. Create a forward and backward iterator for BST. Let’s say the value of nodes they are pointing at are v1 and v2.
2. Now at each step,
• If v1 + v2 = X, we found a pair.
• If v1 + v2 < x, we will make forward iterator point to the next element.
• If v1 + v2 > x, we will make backward iterator point to the previous element.
3. If we find no such pair, answer will be “No”.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Node of the binary tree ` `struct` `node { ` `    ``int` `data; ` `    ``node* left; ` `    ``node* right; ` `    ``node(``int` `data) ` `    ``{ ` `        ``this``->data = data; ` `        ``left = NULL; ` `        ``right = NULL; ` `    ``} ` `}; ` ` `  `// Function to find a pair with given sum ` `bool` `existsPair(node* root, ``int` `x) ` `{ ` `    ``// Iterators for BST ` `    ``stack it1, it2; ` ` `  `    ``// Initializing forward iterator ` `    ``node* c = root; ` `    ``while` `(c != NULL) ` `        ``it1.push(c), c = c->left; ` ` `  `    ``// Initializing backward iterator ` `    ``c = root; ` `    ``while` `(c != NULL) ` `        ``it2.push(c), c = c->right; ` ` `  `    ``// Two pointer technique ` `    ``while` `(it1.top() != it2.top()) { ` ` `  `        ``// Variables to store values at ` `        ``// it1 and it2 ` `        ``int` `v1 = it1.top()->data, v2 = it2.top()->data; ` ` `  `        ``// Base case ` `        ``if` `(v1 + v2 == x) ` `            ``return` `true``; ` ` `  `        ``// Moving forward pointer ` `        ``if` `(v1 + v2 < x) { ` `            ``c = it1.top()->right; ` `            ``it1.pop(); ` `            ``while` `(c != NULL) ` `                ``it1.push(c), c = c->left; ` `        ``} ` ` `  `        ``// Moving backward pointer ` `        ``else` `{ ` `            ``c = it2.top()->left; ` `            ``it2.pop(); ` `            ``while` `(c != NULL) ` `                ``it2.push(c), c = c->right; ` `        ``} ` `    ``} ` ` `  `    ``// Case when no pair is found ` `    ``return` `false``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``node* root = ``new` `node(5); ` `    ``root->left = ``new` `node(3); ` `    ``root->right = ``new` `node(7); ` `    ``root->left->left = ``new` `node(2); ` `    ``root->left->right = ``new` `node(4); ` `    ``root->right->left = ``new` `node(6); ` `    ``root->right->right = ``new` `node(8); ` ` `  `    ``int` `x = 5; ` ` `  `    ``// Calling required function ` `    ``if` `(existsPair(root, x)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `// Node of the binary tree ` `static` `class` `node  ` `{ ` `    ``int` `data; ` `    ``node left; ` `    ``node right; ` `    ``node(``int` `data) ` `    ``{ ` `        ``this``.data = data; ` `        ``left = ``null``; ` `        ``right = ``null``; ` `    ``} ` `}; ` ` `  `// Function to find a pair with given sum ` `static` `boolean` `existsPair(node root, ``int` `x) ` `{ ` `    ``// Iterators for BST ` `    ``Stack it1 = ``new` `Stack(), it2 = ``new` `Stack(); ` ` `  `    ``// Initializing forward iterator ` `    ``node c = root; ` `    ``while` `(c != ``null``) ` `    ``{ ` `        ``it1.push(c); ` `        ``c = c.left; ` `    ``} ` ` `  `    ``// Initializing backward iterator ` `    ``c = root; ` `    ``while` `(c != ``null``) ` `    ``{ ` `        ``it2.push(c); ` `        ``c = c.right; ` `    ``} ` `         `  `    ``// Two pointer technique ` `    ``while` `(it1.peek() != it2.peek())  ` `    ``{ ` ` `  `        ``// Variables to store values at ` `        ``// it1 and it2 ` `        ``int` `v1 = it1.peek().data, v2 = it2.peek().data; ` ` `  `        ``// Base case ` `        ``if` `(v1 + v2 == x) ` `            ``return` `true``; ` ` `  `        ``// Moving forward pointer ` `        ``if` `(v1 + v2 < x)  ` `        ``{ ` `            ``c = it1.peek().right; ` `            ``it1.pop(); ` `            ``while` `(c != ``null``) ` `            ``{ ` `                ``it1.push(c);  ` `                ``c = c.left; ` `            ``} ` `        ``} ` ` `  `        ``// Moving backward pointer ` `        ``else` `        ``{ ` `            ``c = it2.peek().left; ` `            ``it2.pop(); ` `            ``while` `(c != ``null``) ` `            ``{ ` `                ``it2.push(c); ` `                ``c = c.right; ` `            ``} ` `        ``} ` `    ``} ` `     `  `    ``// Case when no pair is found ` `    ``return` `false``; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``node root = ``new` `node(``5``); ` `    ``root.left = ``new` `node(``3``); ` `    ``root.right = ``new` `node(``7``); ` `    ``root.left.left = ``new` `node(``2``); ` `    ``root.left.right = ``new` `node(``4``); ` `    ``root.right.left = ``new` `node(``6``); ` `    ``root.right.right = ``new` `node(``8``); ` ` `  `    ``int` `x = ``5``; ` ` `  `    ``// Calling required function ` `    ``if` `(existsPair(root, x)) ` `        ``System.out.print(``"Yes"``); ` `    ``else` `        ``System.out.print(``"No"``); ` ` `  `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## C#

 `// C# implementation of the approach ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG ` `{ ` ` `  `// Node of the binary tree ` `public` `class` `node  ` `{ ` `    ``public` `int` `data; ` `    ``public` `node left; ` `    ``public` `node right; ` `    ``public` `node(``int` `data) ` `    ``{ ` `        ``this``.data = data; ` `        ``left = ``null``; ` `        ``right = ``null``; ` `    ``} ` `}; ` ` `  `// Function to find a pair with given sum ` `static` `bool` `existsPair(node root, ``int` `x) ` `{ ` `    ``// Iterators for BST ` `    ``Stack it1 = ``new` `Stack(), ` `                 ``it2 = ``new` `Stack(); ` ` `  `    ``// Initializing forward iterator ` `    ``node c = root; ` `    ``while` `(c != ``null``) ` `    ``{ ` `        ``it1.Push(c); ` `        ``c = c.left; ` `    ``} ` ` `  `    ``// Initializing backward iterator ` `    ``c = root; ` `    ``while` `(c != ``null``) ` `    ``{ ` `        ``it2.Push(c); ` `        ``c = c.right; ` `    ``} ` `         `  `    ``// Two pointer technique ` `    ``while` `(it1.Peek() != it2.Peek())  ` `    ``{ ` ` `  `        ``// Variables to store values at ` `        ``// it1 and it2 ` `        ``int` `v1 = it1.Peek().data, ` `            ``v2 = it2.Peek().data; ` ` `  `        ``// Base case ` `        ``if` `(v1 + v2 == x) ` `            ``return` `true``; ` ` `  `        ``// Moving forward pointer ` `        ``if` `(v1 + v2 < x)  ` `        ``{ ` `            ``c = it1.Peek().right; ` `            ``it1.Pop(); ` `            ``while` `(c != ``null``) ` `            ``{ ` `                ``it1.Push(c);  ` `                ``c = c.left; ` `            ``} ` `        ``} ` ` `  `        ``// Moving backward pointer ` `        ``else` `        ``{ ` `            ``c = it2.Peek().left; ` `            ``it2.Pop(); ` `            ``while` `(c != ``null``) ` `            ``{ ` `                ``it2.Push(c); ` `                ``c = c.right; ` `            ``} ` `        ``} ` `    ``} ` `     `  `    ``// Case when no pair is found ` `    ``return` `false``; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``node root = ``new` `node(5); ` `    ``root.left = ``new` `node(3); ` `    ``root.right = ``new` `node(7); ` `    ``root.left.left = ``new` `node(2); ` `    ``root.left.right = ``new` `node(4); ` `    ``root.right.left = ``new` `node(6); ` `    ``root.right.right = ``new` `node(8); ` ` `  `    ``int` `x = 5; ` ` `  `    ``// Calling required function ` `    ``if` `(existsPair(root, x)) ` `        ``Console.Write(``"Yes"``); ` `    ``else` `        ``Console.Write(``"No"``); ` `} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

Output:

```Yes
```

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : 29AjayKumar, Rajput-Ji