Online algorithm for checking palindrome in a stream

Given a stream of characters (characters are received one by one), write a function that prints ‘Yes’ if a character makes the complete string palindrome, else prints ‘No’.

Examples:

Input: str[] = "abcba"
Output: a Yes   // "a" is palindrome
b No    // "ab" is not palindrome
c No    // "abc" is not palindrome
b No    // "abcb" is not palindrome
a Yes   // "abcba" is palindrome

Input: str[] = "aabaacaabaa"
Output:  a Yes   // "a" is palindrome
a Yes   // "aa" is palindrome
b No    // "aab" is not palindrome
a No    // "aaba" is not palindrome
a Yes   // "aabaa" is palindrome
c No    // "aabaac" is not palindrome
a No    // "aabaaca" is not palindrome
a No    // "aabaacaa" is not palindrome
b No    // "aabaacaab" is not palindrome
a No    // "aabaacaaba" is not palindrome
a Yes   // "aabaacaabaa" is palindrome

Let input string be str[0..n-1]. A Simple Solution is to do following for every character str[i] in input string. Check if substring str[0…i] is palindrome, then print yes, else print no.

A Better Solution is to use the idea of Rolling Hash used in Rabin Karp algorithm. The idea is to keep track of reverse of first half and second half (we also use first half and reverse of second half) for every index. Below is complete algorithm.

1) The first character is always a palindrome, so print yes for
first character.

2) Initialize reverse of first half as "a" and second half as "b".
Let the hash value of first half reverse be 'firstr' and that of
second half be 'second'.

3) Iterate through string starting from second character, do following
for every character str[i], i.e., i varies from 1 to n-1.
a) If 'firstr' and 'second' are same, then character by character
check the substring ending with current character and print
"Yes" if palindrome.
Note that if hash values match, then strings need not be same.
For example, hash values of "ab" and "ba" are same, but strings
are different. That is why we check complete string after hash.

b) Update 'firstr' and 'second' for next iteration.
If 'i' is even, then add next character to the beginning of
'firstr' and end of second half and update
hash values.
If 'i' is odd,  then keep 'firstr' as it is, remove leading
character from second and append a next
character at end.

Let us see all steps for example string “abcba

Initial values of ‘firstr’ and ‘second’
firstr’ = hash(“a”), ‘second’ = hash(“b”)

Start from second character, i.e.,
i = 1
a) Compare ‘firstr’ and ‘second’, they don’t match, so print no.
b) Calculate hash values for next iteration, i.e., i = 2
Since i is odd, ‘firstr’ is not changed and ‘second’ becomes hash(“c”)

i = 2
a) Compare ‘firstr’ and ‘second’, they don’t match, so print no.
b) Calculate hash values for next iteration, i.e., i = 3
Since i is even, ‘firstr’ becomes hash(“ba”) and ‘second’ becomes hash(“cb”)

i = 3
a) Compare ‘first’ and ‘second’, they don’t match, so print no.
b) Calculate hash values for next iteration, i.e., i = 4
Since i is odd, ‘firstr’ is not changed and ‘second’ becomes hash(“ba”)

i = 4
a) ‘firstr’ and ‘second’ match, compare the whole strings, they match, so print yes
b) We don’t need to calculate next hash values as this is last index

The idea of using rolling hashes is, next hash value can be calculated from previous in O(1) time by just doing some constant number of arithmetic operations.

Below are the implementations of above approach.

C/C++

 // C program for online algorithm for palindrome checking #include #include    // d is the number of characters in input alphabet #define d 256    // q is a prime number used for evaluating Rabin Karp's Rolling hash #define q 103    void checkPalindromes(char str[]) {     // Length of input string     int N = strlen(str);        // A single character is always a palindrome     printf("%c Yes\n", str);        // Return if string has only one character     if (N == 1) return;        // Initialize first half reverse and second half for      // as firstr and second characters     int firstr  = str % q;     int second = str % q;        int h = 1, i, j;        // Now check for palindromes from second character     // onward     for (i=1; i

Java

 // Java program for online algorithm for // palindrome checking public class GFG  {           // d is the number of characters in      // input alphabet     static final int d = 256;             // q is a prime number used for      // evaluating Rabin Karp's Rolling hash     static final int q = 103;             static void checkPalindromes(String str)     {         // Length of input string         int N = str.length();                 // A single character is always a palindrome         System.out.println(str.charAt(0)+" Yes");                 // Return if string has only one character         if (N == 1) return;                 // Initialize first half reverse and second          // half for as firstr and second characters         int firstr  = str.charAt(0) % q;         int second = str.charAt(1) % q;                 int h = 1, i, j;                 // Now check for palindromes from second          // character onward         for (i = 1; i < N; i++)         {             // If the hash values of 'firstr' and             // 'second' match, then only check              // individual characters             if (firstr == second)             {                 /* Check if str[0..i] is palindrome                 using simple character by character                   match */                 for (j = 0; j < i/2; j++)                 {                     if (str.charAt(j) != str.charAt(i                                                 - j))                         break;                 }                 System.out.println((j == i/2) ?                    str.charAt(i) + " Yes": str.charAt(i)+                   " No");             }             else System.out.println(str.charAt(i)+ " No");                     // Calculate hash values for next iteration.             // Don't calculate hash for next characters             // if this is the last character of string             if (i != N - 1)             {                 // If i is even (next i is odd)                  if (i % 2 == 0)                 {                     // Add next character after first                      // half at beginning of 'firstr'                     h = (h * d) % q;                     firstr  = (firstr + h *str.charAt(i /                                                   2)) % q;                                             // Add next character after second                      // half at the end of second half.                     second = (second * d + str.charAt(i +                                                  1)) % q;                 }                 else                 {                     // If next i is odd (next i is even)                     // then we need not to change firstr,                     // we need to remove first character                     // of second and append a character                     // to it.                     second = (d * (second + q - str.charAt(                              (i + 1) / 2) * h) % q +                                str.charAt(i + 1)) % q;                 }             }         }     }             /* Driver program to test above function */     public static void main(String args[])     {         String txt = "aabaacaabaa";         checkPalindromes(txt);     } } // This code is contributed by Sumit Ghosh

Python

 # Python program Online algorithm for checking palindrome # in a stream    # d is the number of characters in input alphabet d = 256    # q is a prime number used for evaluating Rabin Karp's # Rolling hash q = 103    def checkPalindromes(string):        # Length of input string     N = len(string)        # A single character is always a palindrome     print string + " Yes"        # Return if string has only one character     if N == 1:         return        # Initialize first half reverse and second half for     # as firstr and second characters     firstr = ord(string) % q     second = ord(string) % q        h = 1     i = 0     j = 0        # Now check for palindromes from second character     # onward     for i in xrange(1,N):            # If the hash values of 'firstr' and 'second'         # match, then only check individual characters         if firstr == second:                # Check if str[0..i] is palindrome using             # simple character by character match             for j in xrange(0,i/2):                 if string[j] != string[i-j]:                     break             j += 1             if j == i/2:                 print string[i] + " Yes"             else:                 print string[i] + " No"         else:             print string[i] + " No"            # Calculate hash values for next iteration.         # Don't calculate hash for next characters if         # this is the last character of string         if i != N-1:                # If i is even (next i is odd)             if i % 2 == 0:                    # Add next character after first half at                 # beginning of 'firstr'                 h = (h*d) % q                 firstr = (firstr + h*ord(string[i/2]))%q                    # Add next character after second half at                 # the end of second half.                 second = (second*d + ord(string[i+1]))%q             else:                 # If next i is odd (next i is even) then we                 # need not to change firstr, we need to remove                 # first character of second and append a                 # character to it.                 second = (d*(second + q - ord(string[(i+1)/2])*h)%q                             + ord(string[i+1]))%q    # Driver program txt = "aabaacaabaa" checkPalindromes(txt) # This code is contributed by Bhavya Jain

C#

 // C# program for online algorithm for  // palindrome checking  using System;    class GFG { // d is the number of characters   // in input alphabet  public const int d = 256;    // q is a prime number used for  // evaluating Rabin Karp's Rolling hash  public const int q = 103;    public static void checkPalindromes(string str) {     // Length of input string      int N = str.Length;        // A single character is always     // a palindrome      Console.WriteLine(str + " Yes");        // Return if string has only      // one character      if (N == 1)     {         return;     }        // Initialize first half reverse and second      // half for as firstr and second characters      int firstr = str % q;     int second = str % q;        int h = 1, i, j;        // Now check for palindromes from      // second character onward      for (i = 1; i < N; i++)     {         // If the hash values of 'firstr'          // and 'second' match, then only          // check individual characters          if (firstr == second)         {             /* Check if str[0..i] is palindrome              using simple character by character              match */             for (j = 0; j < i / 2; j++)             {                 if (str[j] != str[i - j])                 {                     break;                 }             }             Console.WriteLine((j == i / 2) ? str[i] +                               " Yes": str[i] + " No");         }         else         {             Console.WriteLine(str[i] + " No");         }            // Calculate hash values for next iteration.          // Don't calculate hash for next characters          // if this is the last character of string          if (i != N - 1)         {             // If i is even (next i is odd)              if (i % 2 == 0)             {                 // Add next character after first                  // half at beginning of 'firstr'                  h = (h * d) % q;                 firstr = (firstr + h * str[i / 2]) % q;                    // Add next character after second                  // half at the end of second half.                  second = (second * d + str[i + 1]) % q;             }             else             {                 // If next i is odd (next i is even)                  // then we need not to change firstr,                  // we need to remove first character                  // of second and append a character                  // to it.                  second = (d * (second + q - str[(i + 1) / 2] *                                    h) % q + str[i + 1]) % q;             }         }     } }    // Driver Code public static void Main(string[] args) {     string txt = "aabaacaabaa";     checkPalindromes(txt); } }    // This code is contributed by Shrikant13

Output:

a Yes
a Yes
b No
a No
a Yes
c No
a No
a No
b No
a No
a Yes

The worst case time complexity of the above solution remains O(n*n), but in general, it works much better than simple approach as we avoid complete substring comparison most of the time by first comparing hash values. The worst case occurs for input strings with all same characters like “aaaaaa”.