Skip to content
Related Articles

Related Articles

Improve Article

Number of strings of length N with no palindromic sub string

  • Difficulty Level : Medium
  • Last Updated : 07 Apr, 2021

Given two positive integers N, M. The task is to find the number of strings of length N under the alphabet set of size M such that no substrings of size greater than 1 is palindromic.
Examples: 
 

Input : N = 2, M = 3
Output : 6
In this case, set of alphabet are 3, say {A, B, C}
All possible string of length 2, using 3 letters are:
{AA, AB, AC, BA, BB, BC, CA, CB, CC}
Out of these {AA, BB, CC} contain palindromic substring, 
so our answer will be 
8 - 2 = 6.

Input : N = 2, M = 2
Output : 2
Out of {AA, BB, AB, BA}, only {AB, BA} contain 
non-palindromic substrings.

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

First, observe, a string does not contain any palindromic substring if the string doesn’t have any palindromic substring of the length 2 and 3, because all the palindromic string of the greater lengths contains at least one palindromic substring of the length of 2 or 3, basically in the center.
So, the following is true: 
 



  • There are M ways to choose the first symbol of the string.
  • Then there are (M – 1) ways to choose the second symbol of the string. Basically, it should not be equal to first one.
  • Then there are (M – 2) ways to choose any next symbol. Basically, it should not coincide with the previous symbols, that aren’t equal.

Knowing this, we can evaluate the answer in the following ways: 
 

  • If N = 1, then the answer will be M.
  • If N = 2, then the answer is M*(M – 1).
  • If N >= 3, then M * (M – 1) * (M – 2)N-2.

Below is the implementation of above idea : 
 

C++




// CPP program to count number of strings of
// size m such that no substring is palindrome.
#include <bits/stdc++.h>
using namespace std;
 
// Return the count of strings with
// no palindromic substring.
int numofstring(int n, int m)
{   
    if (n == 1)
        return m;
 
    if (n == 2)
        return m * (m - 1);
 
    return m * (m - 1) * pow(m - 2, n - 2);
}
 
// Driven Program
int main()
{   
    int n = 2, m = 3;
    cout << numofstring(n, m) << endl;
    return 0;
}

Java




// Java program to count number of strings of
// size m such that no substring is palindrome.
import java.io.*;
 
class GFG {
     
    // Return the count of strings with
    // no palindromic substring.
    static int numofstring(int n, int m)
    {
        if (n == 1)
            return m;
     
        if (n == 2)
            return m * (m - 1);
     
        return m * (m - 1) * (int)Math.pow(m - 2, n - 2);
    }
     
    // Driven Program
    public static void main (String[] args)
    {
        int n = 2, m = 3;
        System.out.println(numofstring(n, m));
    }
}
 
// This code is contributed by ajit.

Python3




# Python3 program to count number of strings of
# size m such that no substring is palindrome
 
# Return the count of strings with
# no palindromic substring.
def numofstring(n, m):
    if n == 1:
        return m
 
    if n == 2:
        return m * (m - 1)
 
    return m * (m - 1) * pow(m - 2, n - 2)
 
# Driven Program
n = 2
m = 3
print (numofstring(n, m))
 
# This code is contributed
# by Shreyanshi Arun.

C#




// C# program to count number of strings of
// size m such that no substring is palindrome.
using System;
 
class GFG {
     
    // Return the count of strings with
    // no palindromic substring.
    static int numofstring(int n, int m)
    {
        if (n == 1)
            return m;
     
        if (n == 2)
            return m * (m - 1);
     
        return m * (m - 1) * (int)Math.Pow(m - 2,
                                           n - 2);
    }
     
    // Driver Code
    public static void Main ()
    {
        int n = 2, m = 3;
        Console.Write(numofstring(n, m));
    }
}
 
// This code is contributed by Nitin Mittal.

PHP




<?php
// PHP program to count number
// of strings of size m such
// that no substring is palindrome.
 
// Return the count of strings with
// no palindromic substring.
function numofstring($n, $m)
{
    if ($n == 1)
        return $m;
 
    if ($n == 2)
        return $m * ($m - 1);
 
    return $m * ($m - 1) *
           pow($m - 2, $n - 2);
}
 
// Driver Code
{
    $n = 2; $m = 3;
    echo numofstring($n, $m) ;
    return 0;
}
 
// This code is contributed by nitin mittal.
?>

Javascript




<script>
// JavaScript program to count number of strings of
// size m such that no substring is palindrome.
 
    // Return the count of strings with
    // no palindromic substring.
    function numofstring(n, m)
    {
        if (n == 1)
            return m;
       
        if (n == 2)
            return m * (m - 1);
       
        return m * (m - 1) * Math.pow(m - 2, n - 2);
    }
 
// Driver Code
 
        let n = 2, m = 3;
        document.write(numofstring(n, m));
 
// This code is contributed by code_hunt.
</script>

Output 
 

6

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :