Skip to content
Related Articles

Related Articles

numpy.tanh() in Python
  • Last Updated : 04 Dec, 2020

The numpy.tanh()is a mathematical function that helps user to calculate hyperbolic tangent for all x(being the array elements).

Equivalent to np.sinh(x) / np.cosh(x) or -1j * np.tan(1j*x).

Syntax : numpy.tanh(x[, out]) = ufunc ‘tanh’)
Parameters :

array : [array_like] elements are in radians.
2pi Radians = 36o degrees

Return : An array with hyperbolic tangent of x for all x i.e. array elements



 
Code #1 : Working




# Python3 program explaining
# tanh() function
  
import numpy as np
import math
  
in_array = [0, math.pi / 2, np.pi / 3, np.pi]
print ("Input array : \n", in_array)
  
tanh_Values = np.tanh(in_array)
print ("\nTangent Hyperbolic values : \n", tanh_Values)


Output :

Input array : 
 [0, 1.5707963267948966, 1.0471975511965976, 3.141592653589793]

Tangent Hyperbolic values : 
 [ 0.          0.91715234  0.78071444  0.99627208]

 
Code #2 : Graphical representation




# Python program showing Graphical
# representation of tanh() function
import numpy as np
import matplotlib.pyplot as plt
  
in_array = np.linspace(-np.pi, np.pi, 12)
out_array = np.tanh(in_array)
  
print("in_array : ", in_array)
print("\nout_array : ", out_array)
  
# red for numpy.tanh()
plt.plot(in_array, out_array, color = 'red', marker = "o")
plt.title("numpy.tanh()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()


Output :

in_array :  [-3.14159265 -2.57039399 -1.99919533 -1.42799666 -0.856798   -0.28559933
  0.28559933  0.856798    1.42799666  1.99919533  2.57039399  3.14159265]

out_array :  [-0.99627208 -0.98836197 -0.96397069 -0.89125532 -0.69460424 -0.27807943
  0.27807943  0.69460424  0.89125532  0.96397069  0.98836197  0.99627208]


 
References : https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.tanh.html#numpy.tanh
.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :