The numpy.not_equal() checks whether two element or unequal or not.
Syntax :
numpy.not_equal(x1, x2[, out])
Parameters :
x1, x2 : [array_like]Input Array whose elements we want to check out : [ndarray, optional]Output array that returns True/False. A placeholder the same shape as x1 to store the result.
Return :
Boolean array
Code 1 :
# Python Program illustrating # numpy.not_equal() method import numpy as geek a = geek.not_equal([ 1. , 2. ], [ 1. , 3. ]) print ( "Not equal : \n" , a, "\n" ) b = geek.not_equal([ 1 , 2 ], [[ 1 , 3 ],[ 1 , 4 ]]) print ( "Not equal : \n" , b, "\n" ) |
Output :
Not equal : [False True] Not equal : [[False True] [False True]]
Code 2 :
# Python Program illustrating # numpy.not_equal() method import numpy as geek # Here we will compare Complex values with int a = geek.array([ 0 + 1j , 2 ]) b = geek.array([ 1 , 2 ]) d = geek.not_equal(a, b) print ( "Comparing complex with int using .not_equal() : " , d) |
Output :
Comparing complex with int using .not_equal() : [ True False]
Code 3 :
# Python Program illustrating # numpy.not_equal() method import numpy as geek # Here we will compare Float with int values a = geek.array([ 1.1 , 1 ]) b = geek.array([ 1 , 2 ]) d = geek.not_equal(a, b) print ( "\nComparing float with int using .not_equal() : " , d) |
Output :
Comparing float with int using .not_equal() : [ True True]
References :
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.not_equal.html
Note :
These codes wonβt run on online-ID. Please run them on your systems to explore the working
.
This article is contributed by Mohit Gupta_OMG π. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.