numpy.nanvar() in Python

numpy.nanvar(arr, axis = None) : Compute the variance of the given data (array elements) along the specified axis(if any), while ignoring NaN values.

Example :

x = 1 1 1 1 1
Standard Deviation = 0 . Variance = 0



y = 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4

Step 1 : Mean of distribution 4 = 7
Step 2 : Summation of (x – x.mean())**2 = 178
Step 3 : Finding Mean = 178 /20 = 8.9
This Result is Variance.

Parameters :
arr : [array_like] input array.
axis : [int or tuples of int]axis along which we want to calculate the variance. Otherwise, it will consider arr to be flattened (works on all the axis). axis = 0 means variance along the column and axis = 1 means variance along the row.
out : [ndarray, optional]Different array in which we want to place the result. The array must have the same dimensions as expected output.
dtype : [data-type, optional]Type we desire while computing variance.

Results : Variance of the array (a scalar value if axis is none) or array with variance values along specified axis; while ignoring NaN values.

Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program illustrating 
# numpy.nanvar() method 
import numpy as np 
      
# 1D array 
arr = [20, 2, np.nan, 1, 34
  
print("arr : ", arr) 
print("\nnanvar of arr : ", np.nanvar(arr)) 
  
print("var of arr : ", np.var(arr)) 
  
print("\nnanvar of arr : ", np.nanvar(arr, dtype = np.float32)) 
print("var of arr : ", np.var(arr, dtype = np.float32)) 
  

chevron_right


Output :

arr :  [20, 2, nan, 1, 34]

nanvar of arr :  187.1875
var of arr :  nan

nanvar of arr :  187.1875
var of arr :  nan

 
Code #2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program illustrating 
# numpy.nanvar() method 
import numpy as np 
      
  
# 2D array 
arr = [[2, 2, 2, 2, 2], 
    [15, 6, np.nan, 8, 2], 
    [23, 2, 54, 1, 2, ], 
    [np.nan, 44, 34, 7, 2]] 
  
      
# nanvar of the flattened array 
print("\nnanvar of arr, axis = None : ", np.nanvar(arr)) 
  
print("\nvar of arr, axis = None : ", np.var(arr)) 
  
      
# nanvar along the axis = 0 
print("\nnanvar of arr, axis = 0 : \n", np.nanvar(arr, axis = 0)) 
  
print("\nvar of arr, axis = 0 : ", np.var(arr, axis = 0)) 
  
# nanvar along the axis = 1 
print("\nnanvar of arr, axis = 1 : ", np.nanvar(arr, axis = 1)) 

chevron_right


Output :

nanvar of arr, axis = None :  249.88888888888889

var of arr, axis = None :  nan

nanvar of arr, axis = 0 : 
 [ 74.88888889 312.75       458.66666667   9.25         0.        ]

var of arr, axis = 0 :  [   nan 312.75    nan   9.25   0.  ]

nanvar of arr, axis = 1 :  [  0.      22.1875 421.84   313.1875]


My Personal Notes arrow_drop_up

Aspire to Inspire before I expire

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.