Related Articles

# numpy matrix operations | rand() function

• Last Updated : 21 Feb, 2019

`numpy.matlib.rand()` is another function for doing matrix operations in numpy. It returns a matrix of random values from a uniform distribution over [0, 1) with given shape.

Syntax : numpy.matlib.rand(*args)

Parameters :
*args : [Arguments] Shape of the output matrix. If given as N integers, each integer specifies the size of one dimension. If given as a tuple, this tuple gives the complete shape. If there are more than one argument and the first argument is a tuple then other arguments are ignored.

Return : The matrix of random values.

Code #1 :

 `# Python program explaining``# numpy.matlib.rand() function`` ` `# importing matrix library from numpy``import` `numpy as geek``import` `numpy.matlib`` ` `# desired 3 x 4 random output matrix ``out_mat ``=` `geek.matlib.rand((``3``, ``4``)) ``print` `(``"Output matrix : "``, out_mat) `
Output :
```Output matrix :  [[ 0.37976085  0.68700838  0.83898103  0.72073804]
[ 0.80577587  0.2508264   0.30179229  0.81376797]
[ 0.70202528  0.17830863  0.61509844  0.27758369]]
```

Code #2 :

 `# Python program explaining``# numpy.matlib.rand() function`` ` `# importing numpy and matrix library``import` `numpy as geek``import` `numpy.matlib`` ` `# desired 1 x 5 random output matrix ``out_mat ``=` `geek.matlib.rand(``5``) ``print` `(``"Output matrix : "``, out_mat) `
Output :
```Output matrix :  [[ 0.56138247  0.97881105  0.53380995  0.27486091  0.1603695 ]]
```

Code #3 :

 `# Python program explaining``# numpy.matlib.rand() function`` ` `# importing numpy and matrix library``import` `numpy as geek``import` `numpy.matlib`` ` `# more than one argument given``out_mat ``=` `geek.matlib.rand((``5``, ``3``), ``4``) ``print` `(``"Output matrix : "``, out_mat) `
Output :
```Output matrix :  [[ 0.86770893  0.35628104  0.19744129]
[ 0.90376689  0.58349554  0.9830152 ]
[ 0.64711739  0.09531791  0.17555793]
[ 0.66141287  0.09164568  0.28818979]
[ 0.92225364  0.56779388  0.58498534]]
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up