numpy matrix operations | repmat() function

numpy.matlib.repmat() is another function for doing matrix operations in numpy. It returns Repeat a 0-D, 1-D or 2-D array or matrix M x N times.

Syntax : numpy.matlib.repmat(a, m, n)

Parameters :
a : [array_like] The input array or matrix which to be repeated.
m, n : [int] The number of times a is repeated along the first and second axes.



Return : [ndarray] repeating array.

Code #1 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# numpy.matlib.repmat() function
  
# importing numpy and matrix library
import numpy as geek
import numpy.matlib
  
# creating input array using  
# array function 
in_arr = geek.array([[1, 0, 2], [3, 4, 5]])
print("Input array", in_arr) 
  
# making a new array 
# using repmat() function 
out_mat = geek.matlib.repmat(in_arr, 2, 3
print ("Output repeated matrix : ", out_mat) 

chevron_right


Output :

Input array [[1 0 2]
 [3 4 5]]
Output repeated matrix :  [[1 0 2 1 0 2 1 0 2]
 [3 4 5 3 4 5 3 4 5]
 [1 0 2 1 0 2 1 0 2]
 [3 4 5 3 4 5 3 4 5]]

 

Code #2 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program explaining
# numpy.matlib.repmat() function
  
# importing numpy and matrix library
import numpy as geek
import numpy.matlib
  
# creating input array using  
# arange function 
in_arr = geek.arange(3)
print("Input array", in_arr) 
  
# making a new array 
# using repmat() function 
out_mat = geek.matlib.repmat(in_arr, 2, 2
print ("Output repeated matrix : ", out_mat) 

chevron_right


Output :

Input array [0 1 2]
Output repeated matrix :  [[0 1 2 0 1 2]
 [0 1 2 0 1 2]]


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.